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Abstract

Background: We applied various machine learning algorithms to a large national dataset to
model the risk of postoperative sepsis after appendectomy to evaluate utility of such methods and
identify factors associated with postoperative sepsis in these patients.

Methods: The National Surgery Quality Improvement Program database was used to identify
patients undergoing appendectomy between 2005 and 2017. Logistic regression, support vector
machines, random forest decision trees, and extreme gradient boosting machines were used to
model the occurrence of postoperative sepsis.

Results: In the study, 223,214 appendectomies were identified; 2,143 (0.96%) were indicated as
having postoperative sepsis. Logistic regression (area under the curve 0.70; 95% confidence
interval, 0.68-0.73), random forest decision trees (area under the curve 0.70; 95% confidence
interval, 0.68-0.73), and extreme gradient boosting (area under the curve 0.70; 95% confidence
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interval, 0.68-0.73) afforded similar performance, while support vector machines (area under the
curve 0.51; 95% confidence interval, 0.50-0.52) had worse performance. Variable importance
analyses identified preoperative congestive heart failure, transfusion, and acute renal failure as
predictors of postoperative sepsis.

Conclusion: Machine learning methods can be used to predict the development of sepsis after
appendectomy with moderate accuracy. Such predictive modeling has potential to ultimately allow
for preoperative recognition of patients at risk for developing postoperative sepsis after
appendectomy thus facilitating early intervention and reducing morbidity.

Introduction

Sepsis continues to be a leading cause of preventable morbidity and mortality in surgical
patients.2 Accounting for more than $20 billion dollars in annual costs to our nation’s
hospital system,? there is increasing attention of payors for providers to reduce the incidence
of postoperative sepsis. Acute appendicitis is one of the most common abdominal surgical
emergencies worldwide.3 Although the rate of sepsis after appendectomy is low,* when it
does occur, it confers increased morbidity and even mortality for the patient.? The low rate
of sepsis after appendectomy limits an individual surgeon’s experience with recognizing the
patients at risk for this complication. In these clinical scenarios, data aggregation from
electronic health records can be used for modeling and predicting these rare events using
artificial intelligence (Al). There is the potential that the incorporation of Al into surgical
practices would benefit patient care.

Since the Health Information Technology for Economic and Clinical Health Act passed in
2009,% data from millions of patients nationwide is now captured in different electronic
health records (EHR) across multiple institutions. The complexity, heterogeneity, size, and
rate at which this data is generated, however, has out-paced the labor-intensive analytical
techniques traditionally used in medicine.” Machine learning (ML), a branch of Al, seeks to
overcome the limitations of traditional statistical techniques in analyzing this type of data.
Compared with conventional clinical statistical methods, which rely on a set of programmed
rules, ML is a type of algorithm in which the model learns from examples such that a task
can be correctly performed on the encounter of novel inputs.8 Whereby it would take a
lifetime to gather robust clinical experience with treating a rare condition or to manually
classify and analyze hundreds of millions of data points, ML models are able to find
statistical patterns across numerous heterogeneous features relatively quickly.®

These algorithms have already been widely used in other industries for decades.10 In recent
years, there has been growing interest in the application of ML in health services research,
where it has begun to be perceived as an innovative tool with potential to harness the
complexity of big data to provide predictive power and improve clinical decision making.1!
The application of ML in the clinical setting, however, particularly within the field of
surgery, has been limited for reasons including difficult interpretability. In this proof of
concept study, we aim to use a widely used, nationally validated surgical dataset to evaluate
the performance of different ML algorithms against traditional statistical methods in
prediction of a rare postoperative sepsis after appendectomy.
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Methods

Patient population

Using the American College of Surgeons National Surgical Quality Improvement Program
(ACS NSQIP) database, Current Procedural Terminology codes were used to identify cases
of open (44950, 44960) and laparoscopic (44970, 44979, 44950, 44960) appendectomy
performed as the principle operative procedure in patients age 16 years and older between
2005 and 2017. In an effort to target only cases in which sepsis developed as a new
diagnosis postoperatively, records coded for sepsis 48 hours before appendectomy were
excluded from analysis. This study was approved by the Loyola University Chicago
Institutional Review Board as exempt. American College of Surgeons National Surgical
Quality Improvement Program and the hospitals participating in the ACS-NSQIP are the
source of the data used herein; they have not verified and are not responsible for the
statistical validity of the data analysis or the conclusions derived by the authors.

Definitions and variable selection

The primary outcome of interest was postoperative sepsis, defined in this study as the
presence of sepsis or septic shock. Specifically, for the diagnosis of sepsis, either
preoperative or postoperative, ACS-NSQIP requires the presence of documented infection or
end organ ischemia in addition to at least 2 of the 5 clinical signs and symptoms of systemic
inflammatory response syndrome. Septic shock was defined as the presence of sepsis in
addition to documented organ or circulatory dysfunction. Independent variables included for
analysis were selected a priori from those available in the NSQIP dataset as those clinical
parameters felt by the practicing physicians on the research team as the ones that are likely
to be associated with the development of postoperative sepsis (Table I).

Missing data handling

Missing data patterns were imputed through multivariable imputation by chained equations
to obtain a complete analytical dataset. Multivariable imputation by chained equations
imputes missing values for all covariates through a chained equation process using various
methods such as predictive mean matching, classification and regression trees, random forest
(RF), and sample.12 We compared each of these methods on a randomly selected subset of
data. In this study, we used predictive mean matching to impute continuous variables, which
is also a preferred method for skewed data,® and logistic regression for categorical
variables.

Statistical methods and ML algorithms

General descriptive statistics were calculated as frequency and percentages and compared
between cohorts using Xz test for categorical variables and Student ¢tests for continuous
variables. For the development of ML algorithms, the dataset was randomly split into 80%
trainingl4 and 20% hidden testing# datasets across all years with measures to prevent over-
fitting and ensure validation. In this setup, a hidden test set was used as a hold-out dataset
where we built a model using training data and further tested its validity on the unused
hidden test data.
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Classification algorithms implemented on the training dataset included traditional
multivariable logistic regression (LR) and 3 ML algorithms: support vector machines
(SVM), random forest decision trees (RFDT), and extreme gradient boosting (XGB)
machines. SVM, RFDT, and XGB machines were chosen for this analysis as these are
among the most commonly used types of supervised ML methods and best used for
classification and regression tasks as in the case of this study.1415

Model performance was reported using standard metrics of epidemiology and organized by
area under the receiver operating characteristic curve (AUC-ROC). Subgroup analysis was
implemented using the calculated predicted probability based off the ensemble of the best
model. Variable importance analysis was conducted to reveal the influence of predictors on
model performance. Variable importance values were normalized (0-100) for simplicity. All
data acquisition and analysis were performed in R (version 3.6.1, The R Foundation for
Statistical Computing) and Python 3.5.6.

Missing data

Of the preoperative variables included in the prediction models (Table I), there were 11
variables that had greater than 1% missing data (Table I1). Of these 11 variables, 10 were
preoperative laboratory values. The variable with the highest rate of missing data was serum
albumin (31.6%) while white blood cell count had the lowest rate (3.5%). Descriptive
statistics of variables before and after imputation provided similar results (data not shown).

Descriptive characteristics

The NSQIP data base included 223,214 records for appendectomy, 94.64% of which were
performed for a primary diagnosis of appendicitis. There were 21,839 (9.8%) cases
performed using an open approach, whereas the majority (7 =201,375; 90.2%) were
completed laparoscopically. Patients were 39.8 + 16.3 years old and predominately male
(50.9%) and white (70.4%). The incidence of postoperative sepsis was 0.96% (n7 =2,143), of
which, 7.6% developed septic shock. The 30-day mortality rate was significantly higher in
patients who developed postoperative sepsis (2.6%) compared with the overall mortality rate
in the study population (0.07%, £< .001). Univariate analysis (Table I1) revealed that
postoperative sepsis after appendectomy was more likely to occur in patients who were older
(48.1 years vs 39.8 years, < .001), black (10.8% vs 7.6%, £< .001), and had comorbid
conditions, including both insulin and noninsulin dependent diabetes, congestive heart
failure (CHF), hypertension, renal failure, disseminated cancer, chronic steroid use, and
bleeding disorders (all £values < .001).

Prediction of postoperative sepsis

Table IV summarizes the performance of each of the prediction models reported in terms of
AUC-ROC. LR, RFDT, and XGB machines models provided equivocal predictive accuracy
(AUC 0.70; 95% confidence interval [CI], 0.68-0.73), whereas S\VM yielded significantly

lower performance (AUC 0.5142; 95% CI, 0.50-0.53). The XGB machines model provided
the highest accuracy of any single methodology (AUC 0.7030; 95% ClI, 0.68-0.73). A final
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model was constructed using an ensemble of the best models including LR, RF, and XGB
machines. This ensemble model yielded the highest attained predictive accuracy (AUC 0.71;
95% ClI, 0.69-0.73).

Subgroup analysis performed using the ensemble model revealed overall similar
performance within cohorts compared with model accuracy in the study population. The
ensemble model had higher predictive accuracy in females, open cases, and in white patients
(Table V). Figure 1 shows the top-20 predictors for the XGB machines classifier. Variable
importance analysis revealed that the factors most strongly associated with postoperative
sepsis in this model were recent 30-day exacerbation or diagnosis of CHF, transfusion of 1
or more units of red blood cells within 72-hours preoperatively, and acute renal failure
within 24 hours prior (variable importance scores of 100.0, 48.04, 44.81, respectively).

between postoperative sepsis and mortality

The rate of 30-day postoperative mortality in our cohort was <0.1%. Given the markedly low
event rate, for the purposes of this study, a separate postoperative mortality prediction model
was not constructed. Postoperative mortality was therefore examined using the predicted risk
for postoperative sepsis as a risk for mortality from which classification accuracy statistics
were calculated and summarized (Table V1). Overall, the postoperative sepsis prediction
models performed well in predicting postoperative 30-day mortality, particularly the
ensemble and RFDT models.

Discussion

In this study we hypothesized that ML algorithms, a type of Al, could be used to model
prediction of postoperative sepsis in patients undergoing appendectomy using a national
database. The predictive accuracy of 4 different models: LR, SVM, RFDT, XGB machines
as well as an ensemble model were compared. Using only variables that could be determined
prospectively prior to operative intervention, we found that overall, there was no significant
improvement in ML model accuracy, measured by our median AUC-ROC of 0.70
(interquartile range, 0.70-0.71) over traditional LR (AUC 0.70; 95% ClI, 0.68-0.73). Our
model accuracy was highest in our ensemble classifier (AUC 0.71; 95% ClI, 0.69-0.73),
which used the LR, RF decision trees, and XGB machines as the inputs to develop a
prediction. The results reflect the ability of an ensemble ML model to aggregate the
prediction of each constituent model to achieve higher prediction accuracy than any
individual model alone. In this study, the improvement in prediction accuracy afforded by
the ensemble model was marginal compared with traditional LR. The similar AUC-ROC
achieved between models, however, demonstrates that even in the case of predicting rare
events, such as postoperative sepsis after appendectomy, there are preoperative signs of
postoperative sepsis as captured even within a relatively small number of features.

Although our study was relatively limited in the number of features available to create
prediction tasks, other studies have demonstrated ML to be a powerful tool in transforming
large amounts of complex EHR data into prognostic models with applications in clinical
decision support, resource allocation, and health care workflow design.8-16:17 Wong et al
demonstrated that when applied to institutional EHR data comprising 796 variables, ML
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algorithms, similar to those used in our study, outperformed current clinical tools in
predicting development of in-patient delirium.1” Similarly, Taylor et al found that ML
outperforms LR and other traditional clinical tools such as CURB-65 for prediction of
sepsis, as captured through 1,697 different International Classification of Disease, version 9,
codes with EHR data from 5,278 emergency department visits.18 Rajkomar et al used a total
of 46,864,534,945 raw EHR data elements of varied temporal relationships from which they
were able to create prediction tools for in-patient mortality, 30-day readmission, prolonged
duration of stay, and diagnosis at discharge that outperformed traditional clinical prediction
tools at every time point.8

As demonstrated by the aforementioned studies, when afforded a large number of inputs, Al
has the ability to make earlier and more accurate predictions. Such prediction models have
the potential to facilitate early intervention, which has been shown to reduce complications,
hospital duration of stay, and cost.18 In surgery, early identification afforded by Al
prediction tools, such as in the case of postappendectomy sepsis, can aid surgeons in their
decision making regarding the timing and type of intervention, selection and duration of
perioperative antibiotics, postoperative disposition, additional monitoring, and need for
follow-up surveillance imaging for detection of early abscess formation, particularly in cases
that otherwise would not have raised suspicion in the majority of providers as being high
risk for sepsis.

Postoperative sepsis is known to be associated with increased mortality,1° and sepsis has
been found to be a predictor of postoperative 30-days mortality.2921 Because of the low
mortality rate (<0.1%) after appendectomy, we did not build a mortality prediction model in
this study. Instead, we used the risk of postoperative sepsis that was predicted by the model
as a risk factor for mortality. In doing so, we obtained a very high predictive accuracy (as
high as AUC of 0.96) on our 20% hold-out test. This result confirms that there may be
clusters of postoperative complications identified by preoperative patterns and sepsis and
mortality may be placed in the same cluster.

Critiques of ML have cited the lack of interpretability and intrinsic ambiguity that is inherent
to “black box” type models as limitations in their utility within clinical medicine.?? In an
effort to address this concern, we performed a variable importance analysis, which allowed
insight into the variables that had the greatest influence within the ML model. The fact that
our results yielded factors that are known to be clinically relevant to the development of
sepsis (CHF, renal failure, preoperative blood transfusion)® validated our ML model. To
draw conclusions regarding the results of the variable importance analysis, however, our
model would need to be externally validated outside of the NSQIP setting (eg,
demonstrating the model predictive performance in non-NSQIP data sets, such as EHR data
or PCORNet’s Clinical Data Research Network data).2 If externally validated, the
preoperative risk factors found to be strong predictors of postoperative sepsis may assist
clinicians in optimizing modifiable risk factors in the case of elective surgery. In cases of
nonmodifiable risk factors, these results may improve shared decision making with patients
preoperatively to include discussion regarding predicted risk of complications, mortality,
postoperative disposition and duration of stay.
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There are a few important limitations to this study. First, the direct clinical implementation
of our proposed model may be limited due to a high rate of false positives. Previous studies
have shown, however, that integration of our model with preoperative clinical text notes may
significantly improve the postoperative sepsis prediction and reduce false positive rates.?!
Additionally, we chose to include all cases of appendectomy in an effort to maximize the
size of the dataset. After rerunning our analysis on adults age 18 years and older, we found
no significant difference in results of model performance (Appendix A). We also chose to
limit our study to only those patients who were indicated as not having a diagnosis of sepsis
preoperatively. We understand this as a potential point of contention, as the pathophysiology
of acute appendicitis is by definition a systemic inflammatory process secondary to
infection. We felt that by eliminating patients who were systemically ill enough to have a
diagnosis of sepsis preoperatively, we could, in theory, isolate our prediction task to those
patients who were at an early stage of the disease pathology or perforation, therefore making
prediction of postoperative sepsis more difficult. In doing so, we identified CHF and acute
renal failure as risk factors for postoperative sepsis which is supported by similar studies.°
Laparoscopy, which has been shown to potentially reduce postoperative complications,24
was not identified on variable importance analysis as being an important predictor within the
models. Additionally, we were not able to include data regarding intraoperative findings,
such as retrocecal or gangrenous appendix, as these may significantly contribute to the
development of postoperative sepsis.

Another limitation of this study is that we chose to apply ML to a national database as
opposed to EHR data. ACS-NSQIP is a very high quality and well-organized surgical
database of harmonized and curated data sets, with robust methods for ensuring data fidelity
on a predefined number of relevant variables. The small size and high quality of the dataset
is one of the main reasons that the ML models we tested did not exceed the performance of
logistic regression in this study. In more noisy and uncurated data sets, however, it is likely
that ML models would significantly outperform logistic regression. Knowing this, we chose
to use ML in the prediction of postoperative sepsis after appendectomy using a well-studied
surgical database and relatively consistent disease process and surgical procedure. By using
this platform to evaluate ML methods we hoped to reduce potential confounding biases and
improve interpretability of our results without sacrificing performance of the models.2> The
results of this study are hypothesis-generating and are meant to fuel deeper understanding of
the application of machine learning in generating predictions of surgical complications.

In conclusion, ML methods can be used to predict the development of postoperative sepsis
post-appendectomy with moderately high accuracy. In patients who initially present without
sepsis, factors associated with the development of postoperative sepsis after appendectomy
include recent CHF exacerbation or diagnosis, acute renal failure, and preoperative
transfusion. Such predictive models may ultimately allow for recognition of patients at risk
for postoperative sepsis after appendectomy prior to surgical intervention potentially
facilitating early risk mitigation and improve informed decision making.
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Table V

Subgroup analysis performed using the ensemble model

1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

Variable AUC (95% CI)
Sex

Female 0.72 (0.68-0.76)

Male 0.69 (0.66-0.73)
Procedure (CPT code)

Appendectomy (44950) 0.64 [0.57-0.72]

Appendectomy for ruptured appendix (44960)
Laparoscopic appendectomy (44970)

0.61 [0.53-0.69]
0.60 (0.66-0.72)

Procedure type
Open 0.71 (0.66-0.77)
Laparoscopic 0.68 (0.65-0.71)
Race
White 0.71 (0.67-0.74)
Black 0.78 (0.70-0.85)
Asian 0.68 (0.49-0.87)
Other/Unknown 0.66 (0.60-0.71)

CPT, Current Procedural Terminology.
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