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GENERALIZED TETRANACCI HYBRID NUMBERS

YUKSEL SOYKAN, ERKAN TASDEMIR

Abstract. In this paper, we introduce the generalized Tetranacci hybrid num-
bers and, as special cases, Tetranacci and Tetranacci-Lucas hybrid numbers.
Moreover, we present Binet’s formulas, generating functions, and the summa-
tion formulas for those hybrid numbers.

1. Introduction

Hybrid numbers are a new generalization of complex, hyperbolic and dual
numbers and contain complex, dual and hyperbolic numbers as well as com-
bined and mixed states of these types of three numbers. Hybrid numbers were
introduced by Ozdemir [13] (see also [14]). The set of hybrid numbers will be
denoted by K and defined by

K = {a+bitce+dh : a,b,c,d € R, i* = —1,e? =0, h? = 1, ih = —hi = e+i}.

This set of numbers can be thought as a set of quadruplets. The real, complex,
dual and hyperbolic units are defined by

1+—(1,0,0,0),i+— (0,1,0,0),e «<— (0,0,1,0),h +— (0,0,0,1)

respectively. These units are called hybrid units.
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The two hybrid numbers are equal if all their components are equal, one by
one. The sum of two hybrid numbers is defined by summing their components.
Zero is the null element. With respect to the addition operation, the inverse
element of Z is —Z, which is defined as having all the components of Z changed
in their signs.

Multiplication of hybrid numbers (the Hybridian product ZW = (a; +
b1i+ c1e + dih)(as + bei + cee+dzh)) can be done according to the following
Table

Table 1. Multiplication Table

11 € h
11]i € h
i|i| -1 1—-h|e+i
ele|h+1 |0 —€
h| h|—-e—i|e¢ 1

For the hybrid number Z = a + bi + ce + dh we list some definitions as
follows (see Ozdemir [13]).
e The number a is called the scalar part and is denoted by S(Z).
e The part bi+ ce + dh is also called the vector part and is denoted by V(Z).
e The conjugate of Z, denoted by Z, is defined by Z = S(Z) — V(Z) =
a — bi — ce — dh as in quaternions.
e The real number

C(Z)=ZZ=Z7ZZ=0a’+(b—c)* - —d*

is called the characteristic number of Z.
e The real number

A(Z) = —(b—c)* +c* 4+ d?

is called the type number of Z.
o We say that

Z is elliptic if A(Z) <0;
Z is hyperbolic if A(Z) > 0;
Z is parabolic if A(Z)=0.

These are called the types of the hybrid numbers.
e The real number

I1Z]| = VIC(Z)| = V]a? + (b — ) — 2 — &?|

is called the norm of Z.
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e The inverse of Z is defined by

4 Z
2=t

where ||Z]| # 0.
Briefly K, the set of hybrid numbers, has the following properties:
e (K,+) is an Abelian group.
e K is a non-commutative ring with respect to the addition and multiplication
operations.
e Multiplication operation in K is associative and not commutative.
° C(leg) = C(Zl)C(Zg) for 21,725 € K.

It is not easy to remember Table 1. Also, the lack of commutativity makes
it difficult to do multiplication. A matrix representation for a hybrid number
is especially important in order to facilitate multiplication of hybrid numbers.
By defining an isomorphism between 2 x 2 matrices and hybrid numbers, it
can be easily multiplied the hybrid numbers and prove many of their features.
On the other hand, hybrid numbers can also be defined by considering the
matrix representation.

THEOREM 1.1 (Ozdemir [13]). The ring of hybrid numbers K is isomorphic
to the ring of real 2 X 2 matrices Moo with the map ¢: K — Moy where

<p(a+bi—|—cs—|—dh):( a+c b—c+d>

c—b+d a-c
for Z = a + bi + ce + dh €K.

a+c b—c+d
c—b+d a-—c )
for Z = a+bi+ ce +dh. The matrix p(Z) = A € May2(R) is called the hybrid
matrix corresponding to the hybrid number Z. Note that we have

)= () () e ()

From the above isomorphism we have the matrix representations

=5 )e= (1 §)wte=(1 3 )em=(1 ).

We denote the matrix given in Theoremby A= (
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With the aid of these four matrices, the multiplication of the hybrid numbers
described above, can also be easily handled. It can easily done operations and
calculations in the hybrid numbers using the corresponding matrices

. 10\ . 0 1 L1 0 1
“lo1 )l 10/ 1 -1 )21 0 )

The hybrid numbers can be classified with respect to determinant and
discriminant of the characteristic equation of the 2 x 2 corresponding matrix.

The classification of hybrid numbers depends entirely on the determinant
and the trace of the 2 x 2 corresponding matrix (for more details, see Ozdemir
[13, [14]).

THEOREM 1.2 (Ozdemir [I3]). Let A be a 2 x 2 real matriz corresponding
to the hybrid number Z. Then the followings hold.

(a) |Z]] = /|det A|
(b) A(Z) = (22)” —det A
(c) Z7! emists if and only if det(A) # 0.

For more details about these hybrid numbers, we refer to the works of
[6l, 13, [14].

A generalized Tetranacci sequence {V,,},>0 = {Vi(Vo, Vi, V2, V3)}n>o is
defined by the fourth-order recurrence relation

(11) Vn - Vn—l + Vn—2 + Vn—3 + Vn—4

with the initial values V = ¢g, V4 = ¢1, Vo = ¢, V3 = ¢3 not all being zero.
This sequence has been studied by many authors and more details can be
found in the extensive literature dedicated to these sequences, see for example
[9, [T, (12, 15, (19}, B20].
The sequence {V,, },>0 can be extended to negative subscripts by defining

Ve ==Vt = Vo) = Vonoz) + Vo)

for n =1,2,3,.... Therefore, recurrence ([1.1)) holds for all integers n.
The first few generalized Tetranacci numbers with positive subscript and
negative subscript are given in the following Table [2]

Table 2. A few generalized Tetranacci numbers
n 0 1 2 3 4 5

Vn co c1 Cc2 c3 co+ci+ca2+ce3 co+2c¢1 +2c0+2¢3 ...
V_p co c3 —cag—c1 —cg 2¢ag —c3 2¢1 — c2 2co — 1 2c3 —2c2 —2c¢1 — 3¢ ...
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If we set Vo = 0,V4 = 1,V5 = 1,V3 = 2, then {V,} is the well-known
Tetranacci sequence and if we set Vo = 3,V; = 1,V5 = 3,V3 = 7 then {V,,}
is the well-known Tetranacci-Lucas sequence. In other words, Tetranacci se-
quence {M, },>o and Tetranacci-Lucas sequence {R,, },>0 are defined by the
fourth-order recurrence relations

(1.2) M,y = My_1+My_o+M,_3+M,_4, My=0,My =My=1,Mz=2
and
(13) Ry, =R,1+Ry2+Ry3+Ry—g, Ry=4R =1,R;=3R3=1.

The sequences {M,, },>0 and {R,, },>0 can be extended to negative subscripts
by defining

Mon=—-M_(n-1) = M_(n-2) = M—(n-3) + M_(n-g)
and
Roy=-R_(n1)— R_(n—2) = R_(n-3) + R_(n-y)

for n = 1,2,3,... respectively. Therefore, recurrences and hold
for all integers n. Next, we present the first few values of the Tetranacci
and Tetranacci-Lucas numbers with positive and negative subscripts, in the
following Table

Table 3. A few values of Tetranacci and Tetranacci-Lucas numbers
n -9 -8 7 6 5 -4 -3 -2 10123425 6 7 8 9
M, 1 -3 2 0 0 -1 1 0 0 O 11 2 4 8 15 29 56 108
R, -19 15 -1 -1 -6 7 -1 -1 -1 4 1 3 7 15 26 51 99 191 367

It is well known that for all integers n, usual Tetranaci and Tetranacci-
Lucas numbers can be expressed using Binet’s formulas

M — an+2 ,6n+2
" Ba-Na=0)  B-a)B-1{F-0)
,yn+2 5n+2

AT -A =0  G-a0-B0 -

(see for example [9] or [21]) or
a—1 0—1

— p—1 -1 v—1 -1 -1
Mn: n—1 n n 6n
sa—3% tsps? ti =3 Tmos
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(see for example [7]) and

respectively, where o, 3,y and § are the roots of the equation z* — 2% — 22 —

x — 1 = 0. Moreover,

1 1
4z w24 Ept
o= 4 2 \/ w ,
1
— D oy w2 2t
p=tilo- LMy |
1 1 1
- _Z - 2_7 -1,
¥ = 1 2w+2\/4 w w™

111
_ _ - 2_7 —1
0=7"3¥ 2\/4 v v

where

1/3 1/3
L 11 N —65 N 563 N —65 /563
S\ 12 54 108 54 108 '

We present Binet’s formula of the generalized Tetranacci sequence.

COROLLARY 1.3. The Binet’s formula of the generalized Tetranacci se-
quence {V,,} is given as

V, = Aan—ﬁ -I-Bﬁn_G +C’}/n_6 —i—D(Sn_G,

where
A= 5a < (Vaa® + (Vo + Vi + Va)a? + (V3 + Va)a + ),
B= Do + (o4 Vi + V)07 + (4 + V)3 10),
0:57 8(V37 + (Vo + Vi + Vo)v2 + (Vi + Va)y + Va),
p=2- (V363 + (Vo +Vi+W)6* + (Vi + V2)é + Va).

50 — 8
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PROOF. For a proof see [16, Corollary 1.3]. Some other proofs can be found
in the literature. Note that the usual Binet formula of generalized Fibonacci
numbers (which includes generalized Tetranacci numbers) is largely studied
in the literature (see for example [2, [3, [4, [8] and references therein). O

In fact, Corollary is a special case of a result in [I, Remark 2.3].

Note that the Binet form of a sequence satisfying for non-negative
integers is valid for all integers n, for a proof of this result see [10]. This result
of Howard and Saidak [10] is even true in the case of higher-order recurrence
relations.

o0
Next, we give the ordinary generating function »_ V,,z™ of the sequence V;,.
n=0
oo
LEMMA 1.4. Suppose that fy,(z) = > Vya™ is the ordinary generat-
n=0
ing function of the generalized Tetranacci sequence {V;,}n>0.Then fy, (x) is

given by

_‘/O—F(Vl—Vo)$+(V2—V1—%)$2+(%—%—‘/1—‘/o)mg

l—z—a2—23—at

(1.4) fv,(x)

PrOOF. Using (|1.1]) and some calculation, we obtain

fv, () = zfv, (x) — 2® fv, (x) — 2° fv, (z) — 2* fv, (2)
:%+(V1*Vg)l’%‘(VQ*Vl*V0)1‘2+(Vv37‘/2—‘/17‘/0)m3

which gives (1.4]). O

The previous Lemma gives the following results as particular examples:
generating function of the Tetranacci sequence M, is

€T
2

fa, () = Z M,z™ = 7
n=0

—z—a?—x3—at
and generating function of the Tetranacci-Lucas sequence R, is

4 — 3z — 2% — 23

1—x—a?—a%—at

fRn(x) = ZRnxn =
n=0
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2. Generalized Tetranacci hybrid numbers and their generating
functions, Binet’s formulas and summations formulas

In this section, we define generalized Tetranacci hybrid numbers and give
generating functions, Binet formulas, summations formulas for them. As spe-
cial cases, we present generating functions, Binet formulas, summations for-
mulas for Tetranacci and Tetranacci-Lucas hybrid numbers.

First, we give some information about hybrid number sequences from the
literature. Szynal-Liana [17] introduced nth Horadam hybrid numbers as

Hy, =W, + iWn+1 + EWn+2 + hWnJrS

where W,, are the Horadam numbers given by the second order recurrence
relation W,, = pW,,_1 — qW,,_o with initial values Wy, W7 and p,q,n are
integers. Szynal-Liana and Wtoch [18] and Cerda-Morales [5] also studied
Horadam types hybrid numbers.

We now define generalized Tetranacci hybrid numbers over the hybridian
algebra K.

DEFINITION 2.1. The nth generalized Tetranacci hybrid number is
(21) HVn = Vn + Vn+1i + Vn+2€ + Vn+3h.

As special cases, the nth Tetranacci hybrid number and the nth Tetranacci-
Lucas hybrid number are given as

HM,, = M,, + My 41i + M, 126 + M, . sh
and

HR, = R, + Rpt1i + Ry426 + R4 3h

respectively.
Note that, by definition, HV,, is well-defined. It can be easily shown that
{HV,,}n>0 can also be defined by the recurrence relation:

(2.2) HV, =HV,,_1 +HV,,_s + HV,,_3 + HV,,_4
with the intial conditions HVy, HVy, HV;, HV3 (see Table .
Note that the sequence {HV,, },>0 can be extended to negative subscripts
by defining
HV_, = _va(nfl) — HV,(H,Q) — HV,(n,g) + HV,(n,4)

for n =1,2,3,.... Therefore, recurrence (12.2)) holds for all integers n.
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The first few generalized Tetranacci hybrid numbers with positive sub-
script and negative subscript are given in the following Table [4}

Table 4. Generalized Tetranacci hybrid numbers

n HV,

-5 (2¢3 — 2¢2 — 2¢1 — 3co) + (2¢0 — c1)i+ (2¢1 — c2)e + (2¢2 — ¢c3)h
—4 (2c0 —c1) + (2¢1 — c2)i+ (2¢2 — c3)e + h(cs — c2 — 1 — o)
-3 (2c1 —c2) + (2c2 — c3)i+ (3 — 2 — 1 — co)e + coh

-2 (2¢2 —e3) + (cg —c2 —c1 — co)i+ coe + cih

-1 (s —c2 —c1 —co) + col + c1e + c2h

0 co + c1i+ c2e + csh
1 c1+c2i+cze+ (co+c1+ca+c3)h
2 c2 +c3i+ (co+ci+c2+tes)et (co+cr+ce2+cz)h
3 cs+(cotecr+ca+e3)i+ (co+2c1 +2c2 4 2¢3)e + (2¢0 + 3c1 + 4ea + 4e3)h
4 (co+4c1 4 c2+c3) + (co+ 2¢1 + 2¢2 + 2¢3)i + (2c0 + 3c1 + 4ca + 4es)e
+(4Co + 6¢1 + Teo + 863)1’1
(co+ 2¢1 + 2¢2 4+ 2¢3) + (2¢c0 + 3c1 + 4dea + 4ez)i+ (deg + 6¢1 + Tea + 8c¢s)e
+(8co + 12¢1 + 14¢2 4 15¢3)h

ot

The first few Tetranacci and Tetranacci-Lucas hybrid numbers with posi-
tive subscript and negative subscript are given in Table [5] and Table [6]

Table 5. Tetranacci hybrid numbers

n HM,, HM_,
0 i+e+2h i+e+2h
1 14+i+ 2e+4h e+h
2 1+2i+44e+8h h

3 24 4i+ 8¢ + 15h 1

4 4 + 8i+ 15¢ + 29h —14i
5 8 + 15i 4 29¢ + 56h —i+4e
6 15+ 29i 4 56e + 108h —e+h
7 29+ 56i 4 108e + 208h 2—h

For two generalized Tetranacci hybrid numbers HV,, and HV}, the addition
and substraction are defined as componentwise, i.e.,

HV, 4+ HVi = (Vo + Vi) + (Vg1 + Ver)i + (Vaga+ Vig2)e + (Viys+ Vigs)h,
HV,, — HV, = (Vn— Vk) + (Vn+1 — Vk+1)i + (Vn+2— Vk+2)€ + (Vn+3— Vk+3)h,

respectively.
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Table 6. Tetranacci-Lucas hybrid numbers

n HR, HR_.,

0 44i+3¢+T7h 44i+3e+T7h
1 14+3i+7+15h —1+4i+e+3h
2 3+ 7i+ 15¢ + 26h —1—-i+4e+h
3 7+ 15i + 26 + 51h —1—i—e+4h
4 154 26i+ 51e 4+ 99h 7—i—e—h
5 26+51i+99%+191lh —6+Ti—e—h
6 514+991+191e+367Th —1—6i+7¢—h
7 994+ 191i+ 367¢ + 708h —1—i—6e+ 7h

Now, we will state Binet’s formula for the generalized Tetranacci hybrid
numbers and in the rest of the paper we fix the following notations:

a=1+ai+a’e +a’h,
B =1+ Bi+ p% + f°h,
A =1+n~i+~% +~+°h,
5 =1+ 0i+ 6% +6°h.

THEOREM 2.2 (Binet’s Formula). For any integer n, the nth generalized
Tetranacci hybrid number is

(2.3) HV,, = Ada™® + BBA" 5 + C77"~¢ 4+ D36
where A, B,C and D are as in Corollary [L.3]

ProOF. Using Binet’s formula of the generalized Tetranacci numbers, we
obtain

HV,, = V;, + Vysai + Vo + Vigsh
= Aa" %+ Bp" 0 4 Oy % 4+ D5
+ (Aa"™° + BA"P + Cy" 0 4+ D" )i
+ (Aa"* + B + Cy" - D" e
+ (Aa"? + BB" P + Cy" 7?4+ D"k
= AGa" 5 + BBB" 6 + CAy* 6 4 D§s™ O,

This proves (2.3)). O
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As special cases, for any integer n, the Binet’s Formula of nth Tetranacci
hybrid number is

B—1~ 1 5

a—-1__ . 4 -1, 7 ~ n—1 1o
sa—8° o8 58 trios

HM,, =

and the Binet’s Formula of nth Tetranacci-Lucas hybrid number is
HR,, = aa™ + BB" + 3™ + 66™.
Next, we present generating functions.

THEOREM 2.3. The generating function for the generalized Tetranacci hy-
brid numbers is

> . HVh + (HV, — HVp)x + (HV, — HV; — HVp)2? + HV_ 23
ZHV”:B - 2_ 3_ 4 :
o l—zrz—2°—2°—2x

PROOF. Let oo
g(x) = Z HV,, 2™
n=0

be generating function of the generalized Tetranacci hybrid numbers. Then
using the definition of the Tetranacci hybrid numbers, and substracting zg(x),
22g(x), 23g(x) and x*g(x) from g(z) and using the recurrence relation HV,, =
HV,,_1 + HV,,_s + HV,,_3 + HV,,_4, we obtain

(1—2z—2%—2%—zh)g(z) = HV + (HV; — HVp)z + (HV, — HV; — HVp)2?
+ (HV3 — HV, — HV; — HVp)a®.

Rearranging above equation and using HV3; = HV; + HV; + HVy + HV_q,
we get

_ HVp + (HV: — HVp)z + (HV, — HV; — HVp)2? + HV_ 23

([l
1—x—22—23— 24

g9()

As special cases, the generating functions for the Tetranacci and Tetranacci-
Lucas hybrid numbers are

o ., (i+e+2h)+ (1+e+2h)z+ (e +2h)z? + (¢ + h)z?
> HM,z" =
o l—z—2%—23 -2t
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and
iHRnxn:(4+i+3s+7h)—|—2(—3—13—2i—i;4s+8h):c
= l—z—2?—-2°—2x
(=2 + 3i+ 5e +4h)2? 4+ (—1 + 4i + € + 3h)a?
+ ;
1—x—a2—23— 2t
respectively.

Next we present some summation formulas of generalized Tetranacci num-
bers.

LEMMA 2.4. For n > 1, we have the following formulas:

. 1
(@) > V= (Vara+2Va+ Vooy — Vo + Vi — V3),
p=1 3
= 1
(b) Z Vopy1 = 5(2‘/2n+2 +Vop — Va1 —2Vo — Vi — 3Va + V),
p=1

- 1
(C) Z Vép = §(2V2n+1 + Von1— Vop_o+ Vo — Vi + 3V, — 2‘/3)
p=1

The above Lemma is given in Soykan [16, Theorem 2.6].
Note that from the above Lemma we have

n n 1
D Vo=Vt D Vo=Vot g (Vi + 2Vt Vo = Vo o+ Vi = Vi)
p=0 p=1

1
=-(Vogo + 2V, + Voo + 2V + V4 — V3),

n 3 n
Z Vopy1 = V1 + Z Vop+1
p=0 =1
= Vi 3 (WVansa + Von = Vanoy = 2V = Vi = 3V3 + Vs)
(2.4) - %(2V2n+2 4 Vo — Van1 — 2V + 2V1 — 3Va + V3),
and

31y =i+ 30
p=0 p=1
1
= VO + 5(2‘/277,—1-1 + ‘/277,—1 - V2n—2 + ‘/O - ‘/1 + 3‘/2 - 2‘/3)

1
(2.5) = 5 (2Vani1 + Vano1 = Vana +4Vo — Vi + 315 — 2V5).
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In the following Theorem, we give some summation formulas of generalized
Tetranacci hybrid numbers.

THEOREM 2.5. For n > 0, we have the following formulas:
(a)
(2.6) ZHV - HVn+2 + 2HV,, + HV,,_;1 + ¢),

where
c=2Vo+Vi = Vs+ (=Vo + V1 — W3)i
+ (—VO —2Vi — V3)€ + (—‘/0 —2Vi — 3V — Vg)h

b
(b) }:H%md QH%MQ+H%n—H%n1+dx

where
d=(—2Vy+2V; —3Va+ V3) + (Vo — Vi + 3V, — 2V3)i
+(=2Vp — Vi — 3Va + Va)e + (Vo — Vi — 2V3)ha.

(c) }:pr 2me4+H%nl—Hwn2+@

where
e=(4Vo — Vi +3Va — 2V3) + (—2Vp + 2V, — 3V + V3)i
+ (Vo= Vi +3Va —2V3)e + (—2Vp — Vi — 3Va + V3)h.

PROOF. (a) Using (2.1), we obtain

D HV, =) Voti) Vi te) Voo th) Vius
p=0 p=0 p=0 p=0 p=0
=Vo+ ...+ Vo) +iVi+ ...+ Vop)
+e(Vo+ ...+ Vo) +h(Va + ... + Viy3),
and so,

SZHV (Voso + 2V + Vg + 2V + V1 — V3)
+ (Vn+3+2Vn+1+Vn+2V0+V1—V3—3V0)
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+eVnpa +2Voapo + Von + 2V + Vi = V3 = 3(Vo + V1))
+E(Vigs +2Vays + Vo + 2V + Vi = Va = 3(Vo + V1 + V2))

= HV,so + 2HV, + HV,_; +c,

where

c=2V+ Vi = Vs +i(2Vh + Vi — V3 —31})
+e@Vo+Vi—Vs=3(Vo+ W) +h(2Vo + V1 — V5 = 3(Vo + Vi + V%))
=2+ Vi —Va+i(-Vo+ V1 — V)
+e(=Vo —2Vi = V3) + h(=Vp — 2V1 — 3V2 — V).

Hence
ZHV = an+2 + 2HV,, + HV,_1 + ¢).

This proves
(b) and (c) follows from the identities and (2.5). O

As special cases, we have the following two corollaries.

COROLLARY 2.6. Forn > 0, we have the following formulas:
- 1
a) Y HM, = 5 (HMy 5 + 2HM, + HM, 1 — (1+i+4e + Th)),
n 1 )
) Y HMypy = 3 (2H Moy 5 + HMo, — HMp, 1 + (1 = 2i = 2¢ — 5h)),
p=0

& 1
c) > HMy, = 3 (2HMop 1 + HMon 1 — HMsp, 5 — (2 i+ 26 + 2h)).

COROLLARY 2.7. Forn > 0, we have the following formulas:

= 1
) ZHRP = 3 (HRy o + 2HR, + HR, 1 + (2 = 100 — 13¢ — 22h)),
ZHR2P+1 2HR2n+2 + HRy,, — HRg,_1 — (8 4 2i + 11e + 11h)),

ZHR2,, 2HR2n+1+]HIR2n 1 —HRy, o + (10 — 8i — 2¢ — 11h)).
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3. Some properties of generalized Tetranacci hybrid

In this section we give some properties of generalized Tetranacci hybrid
numbers and as special cases, we present some properties of Tetranacci and

Tetranacci-Lucas hybrid numbers.

Note that

a+B+7+06=4+1i+3e+7h.

For the generalized Tetranacci hybrid number HV,, = V,,+V,, 1 1i4+ V, 106+

Vi+3h, we list some definitions as follows.
The scalar part is S(Z) = V,, and the vector part is V(HV,,)

Voo + Viysh,

The conjugate of HV,,, is HV,, = S(HV,,) = V(HV,,) = V,, =V j1i— V42 —

Vn+3h'
The characteristic number of HV,, is

C(HV,) = HV,HV,, = HV,,HV,,
= V2 + (Vo1 = Vog2)? = Viio — Vs
=VZ2+ V2, —2VuioVu — V2.
The type number of HV,, is
A(HV,) = =(Vig1 = Vag2)® + Vi + Vi
= V2 4 2Var2Var1 + Vs

The types of the generalized Tetranacci hybrid numbers are

HV;, is elliptic if 2Viqo Vg1 + V2 5 < V2

HV,, is hyperbolic if 2V 2 Vi + V205 > V2145
HYV,, is parabolic if 2Vigo Vi1 + V2 5 = V2.

The norm of HV,, is

numbers

+1)

[V, = VICEV)] = /|V2 + V2 = ZagaVass =V,

2l
n+3|°
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e The inverse of HV,, is

I HV, Vi — Vn+1i —€&Viya2 — Viysh
" C(HVn) V2 +V n+1 — 2V oV — Vnz+3

where ||HV,,|| # 0.

Using the Binet’s formula of the generalized Tetranacci hybrid sequence
{HV,}, the following theorem immediately follows.

THEOREM 3.1. For any integer n, we have the following:
(a) HV,, + HV, 11 = Ada™S(1 + o) + BBA"6(1 + B) + CH7"5(1 + ) +
D&6"5(1 + 6),
(b) HV,, — HV,.41 = A@a"%(1 — a) + BB " 5(1 — B) + CHy"5(1 — 7) +
D&6"5(1 — §),
where A, B,C and D are as in Corollary[1.3]

As special cases, for Tetranacci hybrid number and Tetranacci-Lucas hy-
brid number, we obtain

o?—1 B2 —
HM,, + HM, 11 = aa" !+ net
+ +1 —g0e 55 855
2 1 52 1
Ay 55”
te e taes
(a — 1) ~ n—1 _ (B— ) 1
HM, — HM,1 = —~———&a™ n—
+1 5a—8 & 53— 8 v
Ok VIPUPEN CECD S RS
N T n 57’1
5y_8 ! 50— 8

and

HR,, +HR,1 = @a™(a+ 1) + A" (B + 1) + 37" (v + 1) + 86™(8 + 1),
HR, — HRy 11 = Ga”(1 - a) + B8"(1 = B) + 77" (1 = 7) + 66" (1 - 9).

From Theorem we know that

o(a + bi + ce + dh) = < e bmetd ) — A

—b+d a—c
So, for HV,, = V,, + V411 4+ Vi, 106 + Vi1 3h we have

o Vn + Vn+2 Vn—i—l - Vn+2 + Vn+3
P(EVn) = ( Vit2 = Vg1 + Vags Vi = Viga
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and as special cases we obtain

o Mn + Mn+2 Mn—l—l - Mn+2 + Mn+3
P(HMy) = ( Mo — Mpy1+ Mpys My, — My o
and
Rn + Rn+2 Rn+1 - Rn+2 + Rn+3
HR,) = .
QO( R ) < Rn+2 - Rn+1 + Rn+3 Rn - Rn+2
As basic examples, for HM; =1+ 1i+ 2¢ +4h and HR; =1+ 3i+ 7 + 15h
we obtain
3 3
p(HM;) = ( 5 1 >
and
8 11
SO(HRl) = ( 19 —6 ) .
Note that

10
SO(HV%)SO<HV71) = (Vr? + Vr?-i-l - 2Vn+1vn+2 - V712+3) < 0 1 ) .
From Theorem [1.2, we have the following result.

THEOREM 3.2. Let A be a 2% 2 real matrix corresponding to the generalized
Tetranacci hybrid number HV,,. Then the followings hold.

(a) [HV,[| = /|det Al
(b) A(HV,) = (24)* — det A
(c) HV, ! exists if and only if det(A) # 0.
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