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Abstract. Suppose that the matrix equations system (41 XBy,..., Ay XB) = (Cy1,...,Cy) with
unknown matrix X is given, where A;, B;,and C;,i = 1,2,...,k, are known matrices of suitable
sizes. The matrix nearness problem is considered over the general and least squares solutions of
this system. The explicit forms of the best approximate solutions of the problems over the sets of
symmetric and skew—symmetric matrices are established as well. Moreover, a comparative table
depending on some numerical examples in the literature is given.
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1. INTRODUCTION AND NOTATIONS

Let Rmn. R, J{;f, and JQ;?S be the sets of m x n real matrices, n X n real
matrices, n X n real symmetric matrices, and n X n real skew—symmetric matrices,
respectively. The symbols A7 and AT will denote the transpose and the Moore—
Penrose generalized inverse of a matrix A € R, 5, respectively. Further, vec (-)

. . T .
will stand for the vec operator, i.e., vec(A) = (a{,azT,...,a;) for the matrix

A= (aj.az,....an) € Rmp, ai € Rm,1,1 =1,2,....n, and A®@ B will stand for
the Kronecker product of matrices A € Ry, , and B € R, (see [1]).
Moreover, let
le,nl X"'xzﬂmk,nk - {[Al,.,Ak] | Al € cle-’ni,i - 1,2,...,k}.

It is easy to see that Ry, ny X -+ X Ry, n, 18 a linear space over the real number
field. We define the inner product for all [Ay, As,...,A;] and [B1, Ba,...,Bi] €
Ry X Rmans X0+ X Rymy ny 0 the linear space as follows:

([A1,A2,..., Ak).[B1. Ba...., By]) = tr(BT A1) +---+tr(BL Ap),
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then Ry ny X Romony X0+ X Ry ny 1s a Hilbert inner space. Furthermore, let ||| 5
denotes the norm that is derived by inner product, i.e.,

A1, Az Al = ([A1 Ao AR [AL, Ag. . A Y2
= [tr(AT A1) + 17 (AT Ap) + -+ 1r (AT 43)]Y/?

1/2
= (I P+ 14al?)

where ||-|| denotes the Frobenius norm (see, for example, [11]).

The well-known linear matrix equation AXB = C, where A, B, C are known
matrices of suitable sizes and X is the matrix of unknowns, were studied in the case
of special solution structures, e.g. symmetric, triangular, Hermitian, nonnegative
definite, reflexive, diagonal etc. using matrix decomposition such as the singular
value decomposition (SVD), the generalized SVD (GSVD), the quotient SVD, and
the canonical correlation decomposition (CCD) in [5,6, 12, 15-17,23,36].

Now, first, consider the following two problems.

Problem 1. For given matrices A€ Ry pn, B € Ry r, and C € Ry, 1, find Xef
such that
“AXB —C H — min [AXB—C],
Xef2

where §2 is anyone of the sets of special matrices such as symmetric, skew—symmetric,
Hermitian, reflexive etc.

Problem 2. Let Sg, be the solution set of Problem 1. For a given matrix Xo € R,
find X € Sg, such that

X-x H: min || X — Xo] .
| X =%o| = min 1x =Xl

Problem 2 which is very important in applied sciences is known as the matrix
nearness problem in the literature and it has been extensively studied in recent years.
For instance, Peng et al. [28] and Huang et al. [14] presented matrix iteration meth-
ods for finding the symmetric and skew—symmetric solutions of Problem 2, respect-
ively. Peng et al. [27] gave the necessary and sufficient conditions for solvability of
Problem 2 over reflexive and anti—reflexive matrices. Moreover, they obtained the
explicit expression of the optimal approximation solution of Problem 2 when X is a
reflexive and an anti-reflexive matrix. In these literatures, the linear matrix equation
AXB = C is consistent. But, it is rarely possible to satisfy the consistency condition
of the linear matrix equation AXB = C, since the matrices 4, B, and C occurring
in practice are usually obtained from an experiment. When Problem 2 is inconsist-
ent, Qui et al. [32], Lei et al. [18], and Peng [31] established iterative methods over
the (skew—)symmetric, and (skew—)symmetric P—commuting matrices. On the other
hand, Liao et al. [20], Huang et al. [13] and Zhao et al. [38] derived an explicit
expressions of the least squares solution to Problem 2 when X is (skew—)symmetric
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and (P, Q)-orthogonal symmetric matrix, respectively. Moreover, Sarduvan et al.
established the explicit forms of the best approximate solutions of Problem 2 when
X is (P, Q)—orthogonal (skew—)symmetric matrix [33].

And now, consider the following two problems.

Problem 3. For given matrices A € :’le,n, B1 € Ru,p, C1 € Romy,py, A2 €
Riman, B2 € Ry, p,, and Co € Ry, p,, find X € §2 such that

[A1X B1—C1,A2X B, — (5]

= mi A1XB1—C1,A>XB, - C
. }?2?2”[1 1—C1,A2XBy — Gl ||y

where $2 is anyone of the sets of special matrices such as symmetric, skew—symmetric,
Hermitian, reflexive etc.

Problem 4. Let Sk, be the solution set of Problem 3. For a given matrix Xo € Ry,
find X € Sg, such that

|2 =xXo| = min X=X,

XeSg,

Research on solving a pair of matrix equations has been actively ongoing for past
years. For instance, Mitra [24] and Navarra [25] established conditions for the ex-
istence of a solution and a representation of a general common solution to Problem
3. Also, Ozgﬁler et al. [26], Woude [35], Wang [37], and Liu [22] derived necessary
and sufficient conditions for existence of common solution to Problem 3. Moreover,
Dehghan et al. [8] obtained conditions for the existence of (R, S)—(skew—)symmetric
solution of Problem 3. Ding et al. [9] presented an iterative method for solving a pair
of inconsistent matrix equations.

Besides the works on finding the conditions for the existence of common solution
to Problem 3, there are some valuable efforts on solving of the matrix nearness prob-
lem for a pair of matrix equations. For example, in the case that the matrix equations
in Problem 3 are consistent, iterative algorithms were presented for solving Prob-
lem 4 with certain constraints on solution such as symmetric, reflexive, bisymmetric,
generalized centro—symmetric, and generalized reflexive matrices in [3,7,29,30,34].
Cai et al. [2] and Chen et al. [4] derived iterative algorithms over bisymmetric and
symmetric solutions, respectively, in the case that the matrix equations in Problem 4
are inconsistent.

It is noteworthy that when the pair of matrix equations is inconsistent, its least
squares solutions with minimum norm cannot be obtained by GSVD and CCD. In
order to over come this difficulty, Liao, Lei [19] and Liao et al. [21] derived a different
approach based on the projection theorem. Therefore, they could used the method of
GSVD and CCD to obtain the solution.

In this paper, it is established the general expressions of the (skew—)symmetric
solutions to Problem 4 using kronecker product and Moore—Penrose inverse. More-
over, this general expressions are expanded for the matrix equations of the form
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(A1XBy1,..., A XBy) = (Cq,...,Cy). Furthermore, a comparative table depending
on some numerical examples in the literature is given.

2. PRELIMINARY RESULTS

The vector xg € R,,1 is a least squares solution (LSS) to the inconsistent system
of linear equations Ax = g, where A € R, ., if and only if

(Ax—g)T (Ax—g) > (Axo— &) (Ax0—g)
forall x € R, 1 [10].

The vector xg € Ry,1 is the best approximate solution (BAS) to the inconsistent
system of linear equations Ax = g, where A € R, 5, if and only if

(1) (Ax—g)T (Ax—g) = (Axo— )T (Axo—g) forall x € Ry1,
) xTx > xoTxo for all x € Ry1\{xo} satisfying (Ax—g)T (Ax—g) =
(Axo—8)" (Axo—g) [10].
It is noteworthy that there may be many LSS for an inconsistent system of linear
equations. In addition, a LSS may not be the BAS while the BAS is always a LSS.
However, the BAS is always unique.
If it is assumed that the matrix equation AXB = C, where A € Ry, n, B € R/,
C € Ry,r are known nonzero matrices and X € R, , is the matrix of unknowns,
is inconsistent, then it may be asked to find a matrix X such that |AXB —C|| is
minimum. A matrix satisfying this condition is called an approximate solution to
the matrix equation. The matrix X ¢ Rn,p is defined to be the BAS to the matrix
equation AXB = C if and only if

(DHAXB—CHz“AXB—C”ﬁxMLXeRmP
@) I1X] > XHﬁmﬂLXejgdA{X}smm@mgHAXB-4jH=HAYB-4%L

We note that a vector k € R,,,1 Will stand for the vector vec(K) in the rest of the
text, where K € Ry 5.
It is known that the matrix equation AXB = C can be equivalently written as

(BT®A)x:c. 2.1)

Consequently, the solutions of a matrix equation AXB = C can be obtained by con-
sidering the usual system of linear equations (2.1) instead of the matrix equation
AXB = C. Now, we will give the following Lemma which can be proved easily.

Lemma 1 ([10]). Suppose that Sy is the set of all solutions to the consistent system
of linear equations Ax = g, where A € Ry p is a known matrix, g € Ry, 1 is a known
vector, and x € Ry 1 is the vector of unknowns. For a given vector xo € Ry 1, the
vector X € Sg satisfying

[ X —xo|l = min [|x — xol|
xeSg
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is given by
t=Algt (1 —ATA) Xo.
Lemma 2. Let S, be the set of all least squares solutions to the system of linear
equations Ax = g which do not need to be consistent, where A € Ry, 5 is a known

matrix, § € Ry,1 is a known vector, and x € Ry, 1 is the vector of unknowns. For a
given vector xog € Rp 1, the vector X € S, satisfying

[ X —xo|l = min |[x —xo]|
xX€S,

is given by
i=Algt (1 —ATA) Xo.
Proof. If the system is consistent, then the proof is clear from Lemma 1. Now, let
the system be inconsistent. Then, the normal equations of the system is
AT Ax = ATy (2.2)
which is consistent. So, from Lemma 1, the BAS of the inconsistent system Ax = g
is
=T AT g + (1 - (ATA)T(ATA)) %o
or, equivalently, from [ 10, Theorem 6.2.16]
f=A%g+ (I —ATA) Xo.
O
It is noteworthy that the structures of X in Lemmas 1 and 2 are exactly the same.
Remark 1. The minimization problem
min | X — Xo|
is equivalent to the minimization problem

min

1 T
X—E(Xo-l-XO)

“(x0-x )
R
So, the matrix % (X o+ X OT ) instead of the matrix X is taken to find the symmetric
solutions of Problems 4 if the matrix X is not symmetric.

over the set of R since

2
,VXeﬂ;f.

1
1X = Xo|1? = HX—E(XMXOT)

Similarly if the matrix X is not skew—symmetric, then the matrix % (X 0— X, g )
instead of the matrix X is taken to find the skew—symmetric solutions of Problem 4.
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3. THE (SKEW—)SYMMETRIC SOLUTION OF PROBLEM 4

Our aim is to find a symmetric solution of Problem 4 with an arbitrary matrix
Xo € Ry,. To do this, let us consider the quartet of matrix equations

A1XBy = C;
BIxaAT =cT
A2 XBy = C,

BIxaAl =cf

or, equivalently, the usual system of linear equations

BIT ® Ay vec (Cy)
T T
A1T® L h ‘= vec (C1 ) 3.0
B, ® A> vec (Cp)
A, ® BT vec (C)

In view of Lemma 2, the solution vector of the matrix nearness problem of the system
(3.1)is

i i

BIT®A1 vec(Cl) BIT®A1 BIT®A1
T T T T
oo A1T®B1 vec (C{) 4 xo— A1T®Bl A1T®B1 Yo,
32 ®A2 vec (Cz) B2 ® Ay B2 ®A2
A, ® BT vec (CT) A, ® BT A, ® BT
(3.2)

where x¢g = vec(%(Xo + XOT)).

Thus, we have the following theorem within the framework of those.

Theorem 1. Let A1 € eﬂml’n, B € eRn,pl, C, e ele’pl, Ay € eﬂmz’n, B, €
R, pr» C2 € Rimy,pry Xo € Ry are known matrices, and xo = vec(%(Xo + XOT)).
Then the symmetric solution X e JR,‘E of Problem 4 is given as in (3.2) in view of
X =vec(X).

If it is required to find skew—symmetric solution of Problem 4, then vec (—C;T') is
taken instead of vec (Cl.T), i=1,2.

By continuing with the same idea, Theorem 1 can be extended to k matrix equa-
tions where k is an arbitrary positive integer.

Theorem 2. Let A; € Rm; n, Bi € Rn,p;» Ci € Rom; p; 1 =1,2,...,k, are known
matrices and

SE={X|X €R.|[A1XB1—C\..... A XBi — C] |l = min}. (3.3)

For a given matrix Xo € R, the symmetric solution XesS E satisfying

X = Xo| = min X - x
£ = Xo[ = min X ~Xo|
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is given by
_ BIT®A1 —-F -
A1 ® BT
X = :
Bg@Ak
| Ax®B] | |

where xo = vec(%(Xo + Xg)) and,

Similarly, vec (—CiT) is taken instead of vec (Cl.T), i
skew—symmetric solution.

vec (Cy) [ BI'®4; 1'r
vec (ClT) A1®BIT
S +xo0— :
vec (Cg) BkT®Ak
vec(CkT) ] i Ak®B{ 1 L
% = vec(X).

Bl ® 44
A1 ® BT

BZ@Ak
Ak®Bg

641

X0,

(3.4)

1,2,...,k, for finding

TABLE 1. A comparative table for the examples chosen from the literature

& (%) X —Xoll [41XB1—C1,42XB>—Collly
43.6600 4.5687e+003
1
43.6600 4.5687e+003
0.4366 45.6873
0.01
Example 2 0.4366 45.6873
in [19] 0.0044 0.4569
0.0001
0.0044 0.4569
4.3660e-005 0.0046
0.000001
4.3660e-005 0.0046
28.7113 6.1988e+003
1
33.6729 4.5687e+003
0.2871 66.9884
0.01
Example 3 0.3367 48.1408
in [21] 0.0029 0.6199
0.0001
0.0034 0.4568
2.8711e-005 0.0062
0.000001
3.3673e-005 0.0046
413.4852 2.6688e-021
Example 1 in [29]
413.4852 4.4970e-021
69.9995 9.0727e-023
Example 4.1 in [34]
69.9995 1.3436e-021

(%) € is as given in [

,21].

We close this section with a comparative table (Table 1) consisting examples
chosen from the literature. In each cell, the first value is the result obtained by the
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method proposed in this work while the second one is the result in the referenced
work. All the computations have been performed using Matlab 7.5.

4. CONCLUSIONS

To solve matrix equations system problems become relatively difficult when it is
used matrix decompositions. For example, if the matrix equations are inconsistent,
the matrix decompositions GSVD and CCD can not be individually used to solve
them, and the difficulty lies in the fact that the invariance of the Frobenius norm
does not hold for general nonsingular matrices in these decompositions [19]. For this
reason, these kinds of Problems are usually solved using iterative methods. However,
it is a well known fact that solving these kinds of problems by elementary methods,
which are very simple and elegant, eliminates errors caused by processes of iteration.
Due to these kinds of facts, in our opinion, it is better to give the explicit analytical
expressions of the solutions obtained by elementary methods instead of giving, es-
pecially, the implicit solutions obtained by iterative methods for inconsistent matrix
equations encountered in most of physical problems.

If the dimensions and elements of the matrices included in the problems are large
and sparse, it is clear that the computing processes, especially in the elementary meth-
ods, have contained highly large number of terms. Therefore, elementary methods
may not be useful with the current computer technology in these kinds of situations.
On the other hand, the speed of technological developments is incredible. So, we
believe that these difficulties will be disappeared in the nearest future. Consequently,
within the framework of these considerations, to establish the solutions as in this note
are important not only mathematical point of view but also practically.
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