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Abstract. We investigate the dynamical instability for a two component Bose-Einstein
Condensate (BEC) in an optical lattice. We assume that the two components are in sinusoidal
potentials with the same period but different phases. We find a swallow-tail type instability
near the band edge, however an extra tail is formed due to the inter-component interaction.
Depending on the phase difference of the potentials, the instability region may expand or shrink
with increasing inter-component interaction.

1. Introduction
One of the most promising directions in ultra cold atom research is the investigation of the
optical lattices. Behavior of bosons [1], as well fermions[2] in periodic potentials have been
investigated both theoretically and experimentally. As a result, many phenomena familiar from
solid-state systems, such as Josephson effect [3], non-linear tunneling [4, 5], Mott transition [6]
and Bloch oscillations [7] have been obtained. One of the novel phenomena displayed by Bose-
Einstein condensates (BEC) in an optical lattice is the presence of dynamical instabilities near
band edges [8, 9, 10].

It has been found by analytical and numerical calculations that the chemical potential for
a BEC in an optical lattice may become multi-valued near the Brillouin zone boundary. The
resulting swallow-tail type band structure signifies a dynamical instability of the condensate.
It has been suggested that this instability is a direct consequence of the superfluidity of the
BEC [11]. This instability mechanism is also shown to be connected to the Mott transition in a
continuous manner [12]. Further investigation of the dynamical instability is needed to clarify
the physics of BEC in optical lattices.

The versatility of cold-atom experiments made it possible to create novel superfluids, such
as mixtures or spinor BECs. These systems facilitate investigation of superfluidity in a broader
domain. Thus, we study wether a two component BEC system in an optical lattice has dynamical
instabilities. The connection of these instabilities to superfluidity of multicomponent condensates
will be discussed elsewhere.
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In this paper, variational method is used to determine approximate band structure of a two-
component BEC near the Brillouin zone boundary. Components are assumed to be trapped
separately in periodic potentials which have the same period, but with a phase difference with
respect to each other. We show that the dynamical instability also appears in a two-component
BEC, with an additional tail. We also investigate the dependence of the width of the instability
region on the inter-component interaction.

2. Calculation and Results
We consider the shifted periodic potentials forming the optical lattice as

V1(x) = V01sin
2
(

πx

d

)
and V2(x) = V02sin

2
(

πx

d
+ φ

)
, (1)

where θ = 2φ is the phase difference induced spatially. V01 and V02 are the maximum magnitudes
of the potentials and d is the lattice constant.

Since the two component gas can be described by coupled Gross-Piteaevskii equations, the
mean energy functional is
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where gij = 2πh̄2aij

mij
is the coupling strength between components i and j, mij is the reduced

mass and aij is the scattering length. Mean number densities are
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1
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The periodic potential produces a band structure. Since we are interested in the solutions
near the zone boundary, we use trial wave functions of the form
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where α and β are to be determined by energy minimization at a specific k value. Here the
choice of two different variational parameters (α and β) is needed, as shown by the results below.
In a similar calculation, [13], β was assumed to be equal to α+π/2. Energy minimization shows
that β assumes values other than α + π/2, and the variational wavefunction used in [13] is too
restrictive.

Inserting trial wave functions (4) and (5) into the energy functional (2), we obtain the
parameterized energy
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to be minimized. Minimization with respect to α and β leads to two coupled equations. These
are only analytically solvable when k = π/d, on the zone edge. There exist two type of solutions

i) cos 2α = 0 and cos 2β = 0, (7)

ii) sin 2α =
1

2n1

g22V01 − cos θg12V02

g11g22 − cos2 θg2
12

and sin 2β =
1

2n2

g11V02 − cos θg12V01

g11g22 − cos2 θg2
12

, (8)

where solution i corresponds to the standing waves of the upper and lower band, and solution
ii corresponds the tails in between. For the existence of tails (type ii), both particle densities
must exceed the critical densities, such as, n1 > n1

c and n2 > n2
c . n1

c and n2
c are obtained

by putting the maximum value of 1 for sin function in (8). Following equations (8), critical
densities increase with increasing phase difference. So it is harder to observe the tails in out
phase two-component BEC.

Solutions for the arbitrary values of k (about π
d ), can be studied numerically. For an arbitrary

value of k, the derivatives
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are equated to zero to determine α and β.
To simplify our calculations, we considered the same parameters for both components:

g11 = g22 = g0, m1 = m2 = m, n1 = n2 = n and V01 = V02 = V0. We varied the interspecies
interaction g12 to observe the resulting band structures. We observed that band diagram has a
more complex structure compared to the single-component case [10]. A typical band diagram is
given in figure 1. In part a of the figure, the band diagram is depicted including the energetically
unstable (∂2E

∂α2 or ∂2E
∂β2 < 0) tails. The part b of the figure only contains the stable (∂2E

∂α2 , ∂2E
∂β2 < 0)

tails for visual clarity. In comparison to a single-component BEC, two-component BEC gives
one more stable band tail, OA.

There is a simple physical picture for the doubling of the number of modes near the band
edge. If the components of the BEC were assumed to be independent condensates, both of them
would have separate swallow-tail structures. Without inter-component interaction, these modes
would be degenerate. However, the presence of the interaction between the components couples
these two structures and determines the complex shape of the bands. Of the two energetically
stable tails, one is controlled by the in phase oscillations of the two components, while the other
tail corresponds to the out of phase oscillations.

We also investigated the width of the instability region as a function of interaction strength.
The unstable region has opposite behaviors for the two separate regions of the phase difference,
θ. While in the region θ ∈ [0, π/2] the increase in the inter-species coupling g12 results in
spreading tails(over k), in the region θ ∈ [π/2, π] it results in a narrower instability region. This
is depicted in the figure 2. This behavior supports our picture that the dynamical instability in
different branches are controlled by different oscillations of the two component condensate.

3. Conclusion
We investigated the dynamical instability of a two component BEC in an optical lattice. We
found that the dynamical instability takes place for the two component BEC, however the band

202



0.6 0.8 1 1.2 1.4
4.46

 

4.64

kd/π

E
/n

hω

0.6 0.8 1 1.2 1.4
4.46

4.64

kd/π

E
/n

hω

a) θ=π/5
g

12
=0.1  b) θ=π/5

g
12

=0.1  

O 
A 

Figure 1. The tails in the band diagram of two-component BEC near the zone edge. In part (b),
energetically unstable curves are eliminated for visual clarity. BA is the extra loop compared
to single-componet [10]. Energy per particle is scaled with h̄ω = 2

√
εrV , the energy of small

harmonic oscillations in the trap. εr is the recoil energy. Trap depth is chosen to be
√

V
εr

= 6.

structure near the band edge has one more tail compared to a single component BEC. We
investigated the width of the instability region as a function of inter-component interaction
and found two different behaviors for different optical lattices. The behavior near the band
edge suggests that the instability is governed by in-phase and out-of phase modes of the two
components.
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Figure 2. Change of the spread of tails by increasing inter-components coupling g12. While
growing g12 results in the broadening of the tails for θ = 2π/5 < π/2((a) and (b)), it results the
opposite for θ = 3π/5 > π/2 ((c) and (d)).
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