Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÖzer, Özen
dc.contributor.authorSalem, Abdel Badeh M.
dc.date.accessioned2021-12-12T17:02:06Z
dc.date.available2021-12-12T17:02:06Z
dc.date.issued2017
dc.identifier.issn2313-626X
dc.identifier.issn2313-3724
dc.identifier.urihttps://doi.org/10.21833/ijaas.2017.02.004
dc.identifier.urihttps://hdl.handle.net/20.500.11857/3380
dc.description.abstractIn real quadratic number field Q (root d), integral basis element is denoted by w(d) = [a(0); a(1), a(2), ... , a(l)(d)(-1), a(l(d))] for the period length l(d). The fundamental unit epsilon(d) of real quadratic number field is also denoted by epsilon d = t(d)+u(d)root d/2 >1. The Unit Theorem for real quadratic fields says that every unit in the integer ring of a quadratic field is generated by the fundamental unit. Also, regulator in real quadratic cryptography is outstanding. We have seen that the regulator R = log epsilon(d) plays the role of a group order. The regulator problem is to find an integer R' satisfies vertical bar R' - R vertical bar < 1 where R' is an approximation of.. with any given precision can be computed in polynomial time for discriminant. However, some of the fundamental units can not be calculated by computer programme in short time because of the big numbers or long calculations of usual algorithm. This is also the main problem from the computing/informatics point of view. So, determining of the fundamental units is of great importance. In this paper, we construct a theorem to determine the some certain real quadratic fields Q(root d.) having specific form of continued fraction expansion of w(d) where d = 1(mod4) is a square-free integer. We also present the general context and obtain new certain parametric representation of fundamental unit epsilon(d) for such types of fields. By specialization, we get a fix on Yokoi's invariants and support all results with tables. (C) 2017 The Authors. Published by IASE.en_US
dc.language.isoengen_US
dc.publisherInst Advanced Science Extensionen_US
dc.relation.ispartofInternational Journal of Advanced and Applied Sciencesen_US
dc.identifier.doi10.21833/ijaas.2017.02.004
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectQuadratic fieldsen_US
dc.subjectContinued fractionsen_US
dc.subjectFundamental unitsen_US
dc.subjectYokoi's invariantsen_US
dc.titleA computational technique for determining the fundamental unit in explicit types of real quadratic number fieldsen_US
dc.typearticle
dc.authoridOZER, Ozen/0000-0001-6476-0664
dc.departmentFakülteler, Fen-Edebiyat Fakültesi, Matematik Bölümü
dc.identifier.volume4en_US
dc.identifier.startpage22en_US
dc.identifier.issue2en_US
dc.identifier.endpage27en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosWOS:000397422500004en_US
dc.authorwosidOZER, Ozen/ABB-9945-2020


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster