Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKoyuncu, İsmail
dc.contributor.authorYılmaz, Ceyhun
dc.contributor.authorAlçın, Murat
dc.contributor.authorTuna, Murat
dc.date.accessioned2021-12-12T17:01:21Z
dc.date.available2021-12-12T17:01:21Z
dc.date.issued2020
dc.identifier.issn0360-3199
dc.identifier.issn1879-3487
dc.identifier.urihttps://doi.org/10.1016/j.ijhydene.2020.05.181
dc.identifier.urihttps://hdl.handle.net/20.500.11857/3160
dc.description.abstractIn this study, economic analysis of the hydrogen generation and liquefaction system has been modeled using Multi-Layer Feed-Forward Artificial Neural Network (MLFFANN) and implemented on Field Programmable Gate Array (FPGA). Firstly, the 100X6 data set has been created to be used in the ANN-based modeling of the system using the Engineering Equation Solver (EES) program. This data set has been divided into two data sets as 80X6 for training and 20X6 for testing. The structure of the ANN-based economic analysis of hydrogen generation and liquefaction has been composed of 3 neurons in the input layer, ten neurons in the hidden layer, and three neurons in the output layer. Elliott-2-based TanSig transfer function and Purelin transfer function have been used in the neurons of the hidden layer and the output layer, respectively. Then, the ANN-model has been trained and tested using the Matlab program. The MSE values, 1.40x10E-7 and 2.07x10E-5, have been obtained as the results of the training phase and test phase of the ANN-based system, respectively. After getting fruitful results from training and testing phases, the economic analyses of hydrogen generation and liquation systems have been modeled in VHDL using bias and weight values located in the constructed ANN-based system using Matlab. The modeling has been performed in the Xilinx ISE Design Tools program using a 32-bit IEEE754-1985 floating-point number standard. Then, the modeled ANN-based economic analysis of the hydrogen generation and liquation system has been implemented on the Xilinx Virtex-7 FPGA chip by performing the Place&Route process. The maximum operating frequency of the ANN-based hydrogen generation and liquefaction economy system implemented on FPGA has been obtained as 281.702 MHz using Xilinx ISE Design Tools. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUB_ITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [218M739]en_US
dc.description.sponsorshipThe study is supported by the Scientific and Technological Research Council of Turkey (TUB_ITAK) with the grant number of 218M739.en_US
dc.language.isoengen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofInternational Journal of Hydrogen Energyen_US
dc.identifier.doi10.1016/j.ijhydene.2020.05.181
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHydrogen productionen_US
dc.subjectHydrogen liquefactionen_US
dc.subjectEconomic analysisen_US
dc.subjectArtificial neural networksen_US
dc.subjectField programmable gate arrayen_US
dc.subjectVHDLen_US
dc.titleDesign and implementation of hydrogen economy using artificial neural network on field programmable gate arrayen_US
dc.typearticle
dc.authoridKOYUNCU, ismail/0000-0003-4725-4879
dc.authoridYILMAZ, CEYHUN/0000-0002-8827-692X
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü
dc.departmentMeslek Yüksekokulları, Teknik Bilimler Meslek Yüksekokulu, Elektrik ve Enerji Bölümü
dc.identifier.volume45en_US
dc.identifier.startpage20709en_US
dc.identifier.issue41en_US
dc.identifier.endpage20720en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid53984519400
dc.authorscopusid36342940300
dc.authorscopusid55807412400
dc.authorscopusid55566680600
dc.identifier.wosWOS:000558598300002en_US
dc.identifier.scopus2-s2.0-85087211498en_US
dc.authorwosidKoyuncu, Ismail/ABF-8907-2020
dc.authorwosidYilmaz, Ceyhun/ABI-4117-2020
dc.authorwosidTUNA, Murat/AAY-4674-2020


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster