dc.contributor.author | Yılmaz, Suha | |
dc.contributor.author | Ünlütürk, Yasin | |
dc.date.accessioned | 2021-12-12T17:01:14Z | |
dc.date.available | 2021-12-12T17:01:14Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 2086-8952 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11857/3123 | |
dc.description.abstract | Euclidean and non-Euclidean geometries can be considered as spaces that are invariant under a given group of transformations [8]. The geometry established by this approach is called Cayley-Klein geometry. Galilean 4-space is simply defined as a Cayley-Klein geometry of the product space R x E-3 whose symmetry group is Galilean transformation group which has an important place in classical and modern physics. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Indonesian Mathematical Soc | en_US |
dc.relation.ispartof | Journal of the Indonesian Mathematical Society | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Galilean 4D space | en_US |
dc.subject | Spherical indicatrices | en_US |
dc.subject | ccr-curve | en_US |
dc.subject | Involute-evolute curves | en_US |
dc.subject | Bertrand curve | en_US |
dc.subject | Helix | en_US |
dc.subject | Spherical curve | en_US |
dc.title | ON THE SPHERICAL INDICATRIES OF CURVES IN GALILEAN 4-SPACE | en_US |
dc.type | article | |
dc.department | Fakülteler, Fen-Edebiyat Fakültesi, Matematik Bölümü | |
dc.identifier.volume | 25 | en_US |
dc.identifier.startpage | 154 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.endpage | 170 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.wos | WOS:000494017100001 | en_US |