Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTak, Nihat
dc.date.accessioned2021-12-12T17:01:12Z
dc.date.available2021-12-12T17:01:12Z
dc.date.issued2021
dc.identifier.issn0020-0255
dc.identifier.issn1872-6291
dc.identifier.urihttps://doi.org/10.1016/j.ins.2021.01.024
dc.identifier.urihttps://hdl.handle.net/20.500.11857/3107
dc.description.abstractThere are many methods to obtain accurate forecasts for time series data in the literature. It is imperative to find an appropriate method with the correct assumptions for a given data set and circumstances. However, the assumptions of existing individual methods rarely apply perfectly to data sets of real-life problems. Meta possibilistic fuzzy functions (MPFF) is introduced to overcome the limitations of individual methods by using meta fuzzy functions (MFF) in which the optimum function and weights for method aggregation are found. The possibilistic fuzzy c-means clustering algorithm is adapted in MFFs to mitigate the cost of misspecification of individual methods through weighted combination of methods in functions. The optimum effect sizes (weights) of the forecasting methods in the best function is determined from MPFFs. 9 real-world time series and a forecasting method are selected, and 1 real-world dataset and 13 different forecasting methods are determined for the experimental study of the proposed method. The results verified that the proposed approach achieves greater accuracy in terms of both mean absolute percentage error and root mean square error than existing forecasting methodology. (C) 2021 Elsevier Inc. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofInformation Sciencesen_US
dc.identifier.doi10.1016/j.ins.2021.01.024
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectForecast Combinationen_US
dc.subjectMeta-analysisen_US
dc.subjectPossibilistic FCMen_US
dc.subjectTime series forecastingen_US
dc.titleForecast combination with meta possibilistic fuzzy functionsen_US
dc.typearticle
dc.authoridTak, Nihat/0000-0001-8796-5101
dc.departmentFakülteler, İktisadi ve İdari Bilimler Fakültesi, Ekonometri Bölümü
dc.identifier.volume560en_US
dc.identifier.startpage168en_US
dc.identifier.endpage182en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57194529021
dc.identifier.wosWOS:000670877900010en_US
dc.identifier.scopus2-s2.0-85101177127en_US
dc.institutionauthorTak, Nihat
dc.authorwosidTak, Nihat/AAA-2035-2019


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster