Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorCebeci, Bora
dc.contributor.authorAkan, Aydın
dc.contributor.authorDemiralp, Tamer
dc.contributor.authorErbey, Miray
dc.date.accessioned2021-12-12T17:01:04Z
dc.date.available2021-12-12T17:01:04Z
dc.date.issued2020
dc.identifier.isbn978-1-7281-8073-1
dc.identifier.urihttps://hdl.handle.net/20.500.11857/3053
dc.description2020 Medical Technologies Congress (TIPTEKNO) -- NOV 19-20, 2020 -- ELECTR NETWORK -- Biyomedikal ve Klinik Muhendisligi Dernegi, Izmir Ekonomi Univ, Izmir Katip Celebi Univen_US
dc.description.abstractIn this study, it is determined individual-based features which are used to estimate emotional negative valence and compared the features effectiveness with different classifiers. Ten movie clips are shown to subjects as an emotional stimuli and EEG recording is recorded synchronously. Emotional valence value is scored in [-7 7] Likert scale by the subjects immediately after video ended. According to lowest and highest valence values, two classes are generated. The data is processed on an individual basis and personal spatial filters is obtained by Independent Component Analysis. After calculating the spectrogram of the spatial filtered data, features are extracted by subtracting amplitudes of 3Hz averaged frequency bands. The result of feature selection, it is observed that features from beta and gamma bands are much more effective. The success rate of the selected features was tested with five classifiers by cross validation, and high performance was obtained from multilayer perceptron classifiers and the instance-based k-nearest neighborhood algorithm (IBk-NN). The average accuracies of IBk-NN and multilayer classifier are achieved 86% +/- 8 and 83% +/- 9, respectively.en_US
dc.language.isoturen_US
dc.publisherIeeeen_US
dc.relation.ispartof2020 Medical Technologies Congress (Tiptekno)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectemotionen_US
dc.subjectnegative valenceen_US
dc.subjectfilmen_US
dc.subjectEEGen_US
dc.titleIndividual-based Estimation of Valence with EEGen_US
dc.typeproceedingsPaper
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.authorscopusid36165097400
dc.authorscopusid35617283100
dc.authorscopusid7004701236
dc.authorscopusid57204155672
dc.identifier.wosWOS:000659419900031en_US
dc.identifier.scopus2-s2.0-85099473224en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster