dc.contributor.author | Sakallı, Muharrem Tolga | |
dc.contributor.author | Aslan, Bora | |
dc.date.accessioned | 2021-12-12T17:00:55Z | |
dc.date.available | 2021-12-12T17:00:55Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 0377-0427 | |
dc.identifier.issn | 1879-1778 | |
dc.identifier.uri | https://doi.org/10.1016/j.cam.2013.05.008 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11857/2983 | |
dc.description.abstract | Binary linear transformations (also called binary matrices) have matrix representations over GF(2). Binary matrices are used as diffusion layers in block ciphers such as Camellia and ARIA. Also, the 8 x 8 and 16 x 16 binary matrices used in Camellia and ARIA, respectively, have the maximum branch number and therefore are called Maximum Distance Binary Linear (MDBL) codes. In the present study, a new algebraic method to construct cryptographically good 32 x 32 binary linear transformations, which can be used to transform a 256-bit input block to a 256-bit output block, is proposed. When constructing these binary matrices, the two cryptographic properties; the branch number and the number of fixed points are considered. The method proposed is based on 8 x 8 involutory and non-involutory Finite Field Hadamard (FFHadamard) matrices with the elements of GF(2(4)). How to construct 32 x 32 involutory binary matrices of branch number 12, and non-involutory binary matrices of branch number 11 with one fixed point, are described. (C) 2013 Elsevier By. All rights reserved. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier Science Bv | en_US |
dc.relation.ispartof | Journal of Computational and Applied Mathematics | en_US |
dc.identifier.doi | 10.1016/j.cam.2013.05.008 | |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Cryptography | en_US |
dc.subject | Block cipher | en_US |
dc.subject | Binary linear transformation | en_US |
dc.subject | Branch number | en_US |
dc.subject | Fixed points | en_US |
dc.subject | Finite fields | en_US |
dc.title | On the algebraic construction of cryptographically good 32 x 32 binary linear transformations | en_US |
dc.type | article | |
dc.department | Fakülteler, Mühendislik Fakültesi, Yazılım Mühendisliği Bölümü | |
dc.identifier.volume | 259 | en_US |
dc.identifier.startpage | 485 | en_US |
dc.identifier.endpage | 494 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.authorscopusid | 8240135400 | |
dc.authorscopusid | 24605094500 | |
dc.identifier.wos | WOS:000329376700018 | en_US |
dc.identifier.scopus | 2-s2.0-84889080154 | en_US |