dc.contributor.author | Ullah, K. | |
dc.contributor.author | Khan, B. A. | |
dc.contributor.author | Özer, O. | |
dc.contributor.author | Nisar, Z. | |
dc.date.accessioned | 2021-12-12T17:00:50Z | |
dc.date.available | 2021-12-12T17:00:50Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 1823-8343 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11857/2939 | |
dc.description.abstract | In this paper, some strong and Delta-convergence results for mapping satisfying condition (E) in the setting of uniformly convex Busemann spaces are proved. We are using newly introduced K* iteration process for approximation of fixed point. We also give an example to show the efficiency of K* iteration process. Our results are the extension, improvement and generalization of many known results in the literature of fixed point theory in Busemann spaces. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Univ Putra Malaysia Press | en_US |
dc.relation.ispartof | Malaysian Journal of Mathematical Sciences | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Condition (E) | en_US |
dc.subject | Busemann spaces | en_US |
dc.subject | K* iterative process | en_US |
dc.subject | Delta-convergence | en_US |
dc.subject | strong convergence | en_US |
dc.title | Some Convergence Results Using K* Iteration Process in Busemann Spaces | en_US |
dc.type | article | |
dc.authorid | OZER, Ozen/0000-0001-6476-0664 | |
dc.department | Fakülteler, Fen-Edebiyat Fakültesi, Matematik Bölümü | |
dc.identifier.volume | 13 | en_US |
dc.identifier.startpage | 231 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.endpage | 249 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.authorscopusid | 57220418334 | |
dc.authorscopusid | 57212135162 | |
dc.authorscopusid | 56825400100 | |
dc.authorscopusid | 57223842323 | |
dc.identifier.wos | WOS:000491498400009 | en_US |
dc.identifier.scopus | 2-s2.0-85075974262 | en_US |
dc.authorwosid | OZER, Ozen/ABB-9945-2020 | |