Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTanc, A. Korhan
dc.date.accessioned2021-12-12T17:00:38Z
dc.date.available2021-12-12T17:00:38Z
dc.date.issued2015
dc.identifier.issn1051-2004
dc.identifier.issn1095-4333
dc.identifier.urihttps://doi.org/10.1016/j.dsp.2015.02.018
dc.identifier.urihttps://hdl.handle.net/20.500.11857/2785
dc.description.abstractThis paper introduces a new family of recursive total least-squares (RTLS) algorithms for identification of sparse systems with noisy input vector. We regularize the RTLS cost function by adding a sparsifying term and utilize subgradient analysis. We present l(1) norm and approximate l(0) norm regularized RTLS algorithms, and we elaborate on the selection of algorithm parameters. Simulation results show that the presented algorithms outperform the existing RLS and RTLS algorithms significantly in terms of mean square deviation (MSD). Furthermore, we demonstrate the virtues of our automatic selection for regularization parameter when l(1) norm regularization is applied. (C) 2015 Elsevier Inc. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherAcademic Press Inc Elsevier Scienceen_US
dc.relation.ispartofDigital Signal Processingen_US
dc.identifier.doi10.1016/j.dsp.2015.02.018
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdaptive filteringen_US
dc.subjectSystem identificationen_US
dc.subjectSparse representationen_US
dc.subjectTotal least-squaresen_US
dc.titleSparsity regularized recursive total least-squaresen_US
dc.typearticle
dc.authoridTanc, A. Korhan/0000-0002-0223-7285
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü
dc.identifier.volume40en_US
dc.identifier.startpage176en_US
dc.identifier.endpage180en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid6505555303
dc.identifier.wosWOS:000353312900014en_US
dc.identifier.scopus2-s2.0-84933677328en_US
dc.institutionauthorTanc, A. Korhan
dc.authorwosidTanc, A. Korhan/ABI-3928-2020


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster