Sürü zekâsında yeni bir yaklaşım: Kuş sürüsü algoritması
Özet
Matematiksel programlama olarak da bilinen optimizasyon, bir amaç (değerlendirme) fonksiyonuna göre bir problemde belirli aralıktaki sayısal değerlerin en uygununu seçen işlemler topluluğudur. Optimizasyon problemleri için birçok algoritma önerilmiştir. Bu algoritmaların çoğu sistemin modeli ve amaç fonksiyonu için matematiksel modellere ihtiyaç duymaktadır. Sürü zekâsına dayalı algoritmalar, büyük boyutlu optimizasyon problemleri için, kabul edilebilir sürede optimum ya da optimuma yakın çözümler verebilen algoritmalardır. Matematiksel modelin çıkarılamadığı durumlarda kabul edilebilir sürede sonuç elde edebilmek amacıyla genel amaçlı sezgisel optimizasyon algoritmaları kullanılır. Genel amaçlı sezgisel optimizasyon algoritmaları, biyoloji tabanlı, fizik tabanlı, sürü tabanlı, sosyal tabanlı, müzik tabanlı, kimya tabanlı, spor tabanlı ve matematik tabanlı olmak üzere sekiz farklı grupta değerlendirilmektedir. Sürü zekâsı tabanlı optimizasyon algoritmaları kuş, balık, kedi ve arı gibi canlı sürülerinin hareketlerinin incelenmesiyle geliştirilmiştir. Bu çalışmada, sürü zekâsı optimizasyon algoritmalarının en güncellerinden biri olan kuş sürüsü optimizasyon algoritması ayrıntılı olarak incelenmiştir. Bu algoritmanın performansı, farklı boyutlardaki tek modlu ve çok modlu kalite testi fonksiyonları kullanılarak test edilmiştir. Yapılan deneylerde, optimuma yakınsama eğilimi ve elde edilen sonuç değerleri, performans ölçütü olarak kullanılmıştır. İnceleme sonuçları karşılaştırmalı tablolar aracılığıyla sunulmuş ve yorumlanmıştır. Bu algoritma ile hem tek modlu hem de çok modlu kalite testi fonksiyonlarında diğer sürü zekâsı algoritmalarından çok daha iyi sonuçlar elde edildiği için, algoritmanın ileride birçok problemde etkili olarak kullanılacağı beklenmektedir. Matematiksel programlama olarak da bilinen optimizasyon, bir amaç (değerlendirme) fonksiyonuna göre bir problemde belirli aralıktaki sayısal değerlerin en uygununu seçen işlemler topluluğudur. Optimizasyon problemleri için birçok algoritma önerilmiştir. Bu algoritmaların çoğu sistemin modeli ve amaç fonksiyonu için matematiksel modellere ihtiyaç duymaktadır. Sürü zekâsına dayalı algoritmalar, büyük boyutlu optimizasyon problemleri için, kabul edilebilir sürede optimum ya da optimuma yakın çözümler verebilen algoritmalardır. Matematiksel modelin çıkarılamadığı durumlarda kabul edilebilir sürede sonuç elde edebilmek amacıyla genel amaçlı sezgisel optimizasyon algoritmaları kullanılır. Genel amaçlı sezgisel optimizasyon algoritmaları, biyoloji tabanlı, fizik tabanlı, sürü tabanlı, sosyal tabanlı, müzik tabanlı, kimya tabanlı, spor tabanlı ve matematik tabanlı olmak üzere sekiz farklı grupta değerlendirilmektedir. Sürü zekâsı tabanlı optimizasyon algoritmaları kuş, balık, kedi ve arı gibi canlı sürülerinin hareketlerinin incelenmesiyle geliştirilmiştir. Bu çalışmada, sürü zekâsı optimizasyon algoritmalarının en güncellerinden biri olan kuş sürüsü optimizasyon algoritması ayrıntılı olarak incelenmiştir. Bu algoritmanın performansı, farklı boyutlardaki tek modlu ve çok modlu kalite testi fonksiyonları kullanılarak test edilmiştir. Yapılan deneylerde, optimuma yakınsama eğilimi ve elde edilen sonuç değerleri, performans ölçütü olarak kullanılmıştır. İnceleme sonuçları karşılaştırmalı tablolar aracılığıyla sunulmuş ve yorumlanmıştır. Bu algoritma ile hem tek modlu hem de çok modlu kalite testi fonksiyonlarında diğer sürü zekâsı algoritmalarından çok daha iyi sonuçlar elde edildiği için, algoritmanın ileride birçok problemde etkili olarak kullanılacağı beklenmektedir.
Kaynak
Dicle Üniversitesi Mühendislik Fakültesi Mühendislik DergisiCilt
8Sayı
1Bağlantı
https://app.trdizin.gov.tr/makale/TWpRM01EVXdNQT09https://hdl.handle.net/20.500.11857/2284
Koleksiyonlar
- Makale Koleksiyonu [282]
- TR-Dizin İndeksli Yayınlar Koleksiyonu [1037]