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Graded Diextremities

Ramazan Ekmekçia

aÇanakkale, TURKEY

Abstract. In this paper, the concept of graded diextremity is defined on textures as a generalization
of diextremities on textures and some properties of graded diextremity are obtained. It is shown that
each graded diuniformity generates a graded diextremity and each graded diextremity genarates a graded
ditopology. Moreover, the relations between graded diextremities (resp. graded diuniformities, graded
ditopologies) and diextremities (resp. diuniformities, ditopologies) are investigated in basic categorical
aspects.

1. Introduction

The concept of fuzzy topological space was defined in 1968 by C. Chang as ordinary subset of the family
of all fuzzy subsets of a given set [8]. As a more suitable approach to the idea of fuzzyness, in 1985, Šostak
and Kubiak independently redefined fuzzy topology where a fuzzy subset has a degree of openness rather
than being open or not [12, 17].

A ditopology (τ, κ) on the discrete texture (X,P(X)) gives rise to a bitopological space (X, τ, κc). This link
with bitopological spaces has had a powerful influence on the development of the theory of ditopological
texture spaces, but it should be emphasized that a ditopology and a bitopology are conceptually different.
Indeed, a bitopology consists of two separate topological structures whose interrelations are studied,
whereas a ditopology represents a single topological structure.

Ditopological texture spaces were introduced by L.M. Brown as a natural extension of the work on
the representation of lattice-valued topologies by bitopologies in [11]. Ditopology is more general than
general topology, bitopology and fuzzy topology in Chang’s sense. An adequate introduction to the theory
of textures and ditopological texture spaces may be obtained from [2–6, 18]. G. Yıldız and R. Ertürk
have introduced diextremity as an extension of proximity in the sense of [13] to the texture spaces and
investigated interrelations between these two structures in [20].

Recently, L.M. Brown and A. Šostak have presented ”graded ditopology” on textures as an extension
of ditopology to the case where openness and closedness are given in terms of a priori unrelated grading
functions [7]. Graded ditopology is more general than ditopology and fuzzy topology in Šostak’s sense.
Two sorts of neighborhood structure on graded ditopological texture spaces are presented and investigated
in [9].
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The main aim of this work is to generalize the structure of diextremity in ditopological texture spaces
defined in [20] to the graded ditopological texture spaces and to obtain fundamental properties of interre-
lations of these two topological structures; an other aim is to investigate graded ditopologies generated by
graded diextremities and graded diextremities generated by graded diuniformities. In addition, the final
intention is to study basic categorical perspective of this new structure.

2. Preliminaries

Ditopological texture spaces: ([4]) Let S be a set. A texturing S on S is a subset of P(S) which is a point
separating (i.e. for all s, t ∈ S, s , t there exists a set A ∈ S such that s ∈ A, t < A or s < A, t ∈ A), complete,
completely distributive lattice with respect to inclusion which contains S, ∅ and for which meet

∧
coincides

with intersection
⋂

and finite joins
∨

with unions
⋃

. The pair (S,S) is then called a texture or a texture
space.

In general, a texturing of S need not be closed under set complementation, but there may exist a
mapping σ : S → S satisfying σ(σ(A)) = A and A ⊆ B ⇒ σ(B) ⊆ σ(A) for all A,B ∈ S. In this case σ is
called a complementation on (S,S) and (S,S, σ) is said to be a complemented texture. A complementation
σ on a texture (S,S) is called ”grounded” [16] if there is an involution s 7→ s′ on S such that σ(Ps) = Qs′ and
σ(Qs) = Ps′ (s′ will be denoted by σ(s)) for all s ∈ S and in this case the complemented texture space (S,S, σ)
is called ”complemented grounded texture space”.

For any texture (S,S), many properties are conveniently defined in terms of the p − sets

Ps =
⋂
{A ∈ S | s ∈ A}

and the q − sets

Qs =
∨
{A ∈ S | s < A} =

∨
{Pu | u ∈ S, s < Pu}.

For a set A ∈ S, the core of A (denoted by A[) is defined by

A[ =
⋂{⋃

{Ai | i ∈ I} |{Ai | i ∈ I} ⊆ S, A =
∨
{Ai | i ∈ I}

}
.

Let (S,S) and (V,V) be textures. P(s,v), Q(s,v) will denote the p-sets and q-sets for the product texture
(S × V,P(S) ⊗V) and P(v,s), Q(v,s) will denote the p-sets and q-sets for the product texture (V × S,P(V) ⊗ S).

Theorem 2.1. ([4]) In any texture (S,S), the following statements hold:

1. s < A⇒ A ⊆ Qs ⇒ s < A[ for all s ∈ S, A ∈ S.
2. A[ = {s | A * Qs} for all A ∈ S.
3. For A j ∈ S, j ∈ J we have (

∨
j∈J A j)[ =

⋃
j∈J A[

j .

4. A is the smallest element of S containing A[ for all A ∈ S.
5. For A,B ∈ S, if A * B then there exists s ∈ S with A * Qs and Ps * B.
6. A =

⋂
{Qs | Ps * A} for all A ∈ S.

7. A =
∨
{Ps | A * Qs} for all A ∈ S.

Definition 2.2. ([4]) Let (S,S) and (V,V) be textures. Then

(1) r ∈ P(S) ⊗V is called a relation on (S,S) to (V,V) if it satisfies
R1 r * Q(s,v), Ps′ * Qs ⇒ r * Q(s′,v).
R2 r * Q(s,v) ⇒ ∃s′ ∈ S such that Ps * Qs′ and r * Q(s′,v).

(2) R ∈ P(S) ⊗V is called a co-relation on (S,S) to (V,V) if it satisfies
CR1 P(s,v) * R, Ps * Qs′ ⇒ P(s′,v) * R.
CR2 P(s,v) * R⇒ ∃s′ ∈ S such that Ps′ * Qs and P(s′,v) * R.
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(3) A pair (r,R), where r is a relation and R a co-relation on (S,S) to (V,V) is called a direlation on (S,S)
to (V,V).

The direlations can be ordered as follows: for direlations (p,P), (q,Q) on (S,S) to (V,V) it is written
(p,P) v (q,Q) if and only if p ⊆ q and Q ⊆ P. Moreover, it is defined in [14] that

p u q =
∨
{P(s,v) | ∃t ∈ S with Ps * Qt and p, q * Q(t,v)},

P tQ =
⋂
{Q(s,v) | ∃t ∈ S with Pt * Qs and P(t,v) * P,Q},

(p,P) u (q,Q) = (p u q,P tQ).

For a texture (S,S), i = iS =
∨
{P(s,s) | s ∈ S} is a relation and I = IS =

⋂
{Q(s,s) | s ∈ S} is a co-relation on

(S,S) to (S,S). That is, (i, I) is a direlation and we call it the identity direlation on (S,S).
Let (r,R) be a direlation on (S,S) to (V,V). The inverses of r and R are defined respectively by r← =⋂
{Q(v,s) | r * Q(s,v)} and R← =

∨
{P(v,s) | P(s,v) * R} where R← is a relation and r← is a co-relation on (V,V) to

(S,S). The direlation (r,R)← = (R←, r←) is called the inverse of (r,R).
For A ∈ S, r→A =

⋂
{Qv | ∀s, r * Q(s,v) ⇒ A ⊆ Qs} is called the A-section of r and R→A =

∨
{Pv | ∀s,P(s,v) *

R⇒ Ps ⊆ A} is called the A-section of R.
For B ∈ V, r←B =

∨
{Ps | ∀v, r * Q(s,v) ⇒ Pv ⊆ B} is called the B-presection of r and R←B =

⋂
{Qs | ∀v,P(s,v) *

R⇒ B ⊆ Qv} is called the B-presection of R.
The family of direlations on a texture space (S,S) will be denoted byDRS or if there is no confusion just

by DR.
For a direlation (d,D), d→Pt and D→Qt will be denoted by d[t] and D[t] respectively.

Lemma 2.3. ([4, 19]) Let r, r1, r2 be relations, R,R1,R2 co-relations on (S,S) to (V,V) with r1 ⊆ r2, R1 ⊆ R2 and
take A,A1,A2 ∈ S with A1 ⊆ A2, take B,B1,B2 ∈ V with B1 ⊆ B2.

(1) r * Q(s,v) ⇔ P(v,s) * r← and P(s,v) * R⇔ R← * Q(v,s) for all s ∈ S, v ∈ V.
(2) (r←)← = r and (R←)← = R
(3) For a second direlation (m,M) from (S,S) to (V,V), (r,R) v (m,M)⇔ (r,R)← v (m,M)←

(4) r→∅ = ∅, A ⊆ r←(r→A), r→(r←B) ⊆ B
(5) R→S = V, R←(R→A) ⊆ A, B ⊆ R→(R←B)
(6) r→1 A1 ⊆ r→2 A2, R→1 A1 ⊆ R→2 A2, r←2 B1 ⊆ r←1 B2, R←2 B1 ⊆ R←1 B2.

Proposition 2.4. ([4]) For a direlation (r,R) on (S,S) to (V,V) we have r→(
∨

i∈I Ai) =
∨

i∈I r→Ai, R→(
⋂

i∈I Ai) =⋂
i∈I R→Ai, r←(

⋂
j∈J B j) =

⋂
j∈J r←B j and R←(

∨
j∈J B j) =

∨
j∈J R←B j for any Ai ∈ S, B j ∈ V, i ∈ I, j ∈ J.

Definition 2.5. ([4]) Let (S,S), (V,V) and (Y,Y) be textures.

(1) If p is a relation on (S,S) to (V,V) and q is a relation on (V,V) to (Y,Y) then their composition is the
relation q ◦ p on (S,S) to (Y,Y) defined by

q ◦ p =
∨
{P(s,y) | ∃v ∈ V with p * Q(s,v) and q * Q(v,y)}.

(2) If P is a co-relation on (S,S) to (V,V) and Q is a co-relation on (V,V) to (Y,Y) then their composition
is the co-relation Q ◦ P on (S,S) to (Y,Y) defined by

Q ◦ P =
⋂
{Q(s,y) | ∃v ∈ V with P(s,v) * P and P(v,y) * Q}.

(3) The composition of direlations (p,P) and (q,Q) is the direlation (q,Q)◦ (p,P) defined by (q,Q)◦ (p,P) =
(q ◦ p,Q ◦ P).

Also it is shown in [4] that the composition of direlations is associative and [(q,Q) ◦ (p,P)]← = (p,P)← ◦
(q,Q)←.
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Definition 2.6. ([4]) Let ( f ,F) be a direlation from (S,S) to (V,V). Then ( f ,F) is called a difunction from
(S,S) to (V,V) if it satisfies the following two conditions:

(DF1) For s, s′ ∈ S, Ps * Qs′ ⇒ ∃v ∈ V with f * Q(s,v) and P(s′,v) * F.

(DF2) For v, v′ ∈ V and s ∈ S, f * Q(s,v) and P(s,v′) * F⇒ Pv′ * Qv.

It is clear that (iS, IS) is a difunction on (S,S) and we call it the identity difunction on (S,S). Texture
spaces and difunctions form a category denoted by dfTex [4].

Proposition 2.7. ([4]) For a difunction ( f ,F) on (S,S) to (V,V) we have f←B = F←B for each B ∈ V.

Definition 2.8. ([5]) A dichotomous topology, or ditopology for short, on a texture (S,S) is a pair (τ, κ) of
subsets of S, where the set τ of open sets satisfies

(T1) S, ∅ ∈ τ
(T2) G1,G2 ∈ τ⇒ G1 ∩ G2 ∈ τ
(T3) Gi ∈ τ, i ∈ I⇒

∨
i Gi ∈ τ

and the set κ of closed sets satisfies

(CT1) S, ∅ ∈ κ
(CT2) K1,K2 ∈ κ⇒ K1 ∪ K2 ∈ κ
(CT3) Ki ∈ κ, i ∈ I⇒

⋂
i Ki ∈ κ.

Thus a ditopology is essentially a ”topology” for which there is no a priori relation between the open and
closed sets. When a complementation σ on (S,S) is given, (τ, κ) is called complemented if κ = σ(τ).

Definition 2.9. ([5]) Let (Sk,Sk, τk, κk), k = 1, 2 be ditopological texture spaces and ( f ,F) : (S1,S1)→ (S2,S2)
a difunction. ( f ,F) is called continuous if

F←A ∈ τ1, for all A ∈ τ2

and cocontinuous if

f←A ∈ κ1, for all A ∈ κ2.

The difunction ( f ,F) is called bicontinuous if it is both continuous and cocontinuous.

Theorem 2.10. ([5]) Ditopological texture spaces and bicontinuous difunctions form a category denoted by dfDiTop.

Diuniform texture spaces: ([15]) Let (S,S) be a texture and U a nonempty family of direlations on (S,S),
i.e. ∅ ,U ⊆ DRS. IfU satisfies the conditions

(U1) (i, I) v (d,D) for all (d,D) ∈ U,
(U2) (d,D) ∈ U, (e,E) ∈ DR and (d,D) v (e,E) implies (e,E) ∈ U,
(U3) (d,D), (e,E) ∈ U implies (d,D) u (e,E) ∈ U,
(U4) Given for all (d,D) ∈ U there exists (e,E) ∈ U satisfying (e,E) ◦ (e,E) v (d,D),
(U5) Given for all (d,D) ∈ U there exists (c,C) ∈ U satisfying (c,C)← v (d,D),

thenU is called a direlational uniformity on (S,S) and the triple (S,S,U) is known as a direlational uniform
texture space. We will use ”diuniformity” and ”diuniform texture space” instead of the terms ”direlational
uniformity” and ”direlational uniform texture space” respectively.

Proposition 2.11. ([15]) Let (S,S), (V,V) be texture spaces, (d,D) a direlation on (V,V) and ( f ,F) : (S,S)→ (V,V)
a difunction.



R. Ekmekçi / Filomat 32:1 (2018), 149–164 153

1. For the sets

( f ,F)−1(d) =
∨
{P(s1 ,s2) | ∃Ps1 * Qs′1

: P(s′1 ,v1) * F, f * Q(s2 ,v2) ⇒ P(v1 ,v2) ⊆ d}

and

( f ,F)−1(D) =
⋂
{Q(s1 ,s2) | ∃Ps′1

* Qs1 : f * Q(s′1 ,v1), P(s2 ,v2) * F⇒ D ⊆ Q(v1 ,v2)},

( f ,F)−1(d,D) = (( f ,F)−1(d), ( f ,F)−1(D))

is a direlation on (S,S).
2. ( f ,F)−1(iV, IV) = (iS, IS)
3. (iS, IS)−1(d,D) = (d,D) for all (d,D) ∈ DRS.

Let (Sk,Sk,Uk), k = 1, 2 be diuniform texture spaces and ( f ,F) : (S1,S1)→ (S2,S2) a difunction. ( f ,F) is
called U1 − U2 uniformly bicontinuous if ( f ,F)−1(d,D) ∈ U1 for each (d,D) ∈ U2. The identity difunction
and the composition of uniformly bicontinuous difunctions are uniformly bicontinuous. So, the class of
diuniform texture spaces and uniformly bicontinuous difunctions between them form a category denoted
by dfDiU.
Diextremities: ([20]) Let (S,S) be a texture, δa, δb two binary relations on S. Then δ = (δa, δb) is called a
diextremity on (S,S) if

(E1) AδaB implies A , ∅, B , S.

(E2) (A ∪ B)δaC iff AδaC or BδaC.

(E3) Aδa(B ∩ C) iff AδaB or AδaC.

(E4) If A 6δa B, there exists E ∈ S such that A 6δa E and E 6δa B.

(E5) A 6δa B implies A ⊆ B.

(DE) AδbB⇔ BδaA.

(CE1) AδbB implies A , S, B , ∅.

(CE2) Aδb(B ∪ C) iff AδbB or AδbC.

(CE3) (A ∩ B)δbC iff AδbC or BδbC.

(CE4) If A 6δb B, there exists E ∈ S such that A 6δb E and E 6δb B.

(CE5) A 6δb B implies B ⊆ A.

In this case it is said that δa is an extremity and δb a co-extremity. Also, (S,S, δ) is known as a diextremial
texture space.

Let δ = (δa, δb) be a diextremity on a complemented texture (S,S, σ). Define δ̇ = (δ̇a, δ̇b) by

Aδ̇aB⇔ σ(A)δbσ(B) and Aδ̇bB⇔ σ(A)δaσ(B)

where A,B ∈ S. Then δ̇ is a diextremity on (S,S, σ). The diextremity δ is said to be complemented if δ = δ̇.
Let (S1,S1, δ1) and (S2,S2, δ2) be diextremial texture spaces and ( f ,F) : (S1,S1) → (S2,S2) a difunction.

Then ( f ,F) is called extremial bicontinuous if it satisfies one, and hence both, of the following equivalent
conditions:

(1) C 6δa
2 D implies f←C 6δa

1 f←D for all C,D ∈ S2.
(2) C 6δb

2 D implies f←C 6δb
1 f←D for all C,D ∈ S2.
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The identity difunction and the composition of extremial bicontinuous difunctions are extremial bicontinu-
ous. So, the class of diextremial texture spaces and extremial bicontinuous difunctions between them form
a category that we will denote by dfDiE.

For a diextremial texture space (S,S, δ) and for any A ∈ S define

int(A) =
⋂
{Qs | Psδ

aA} and cl(A) =
∨
{Ps | Qsδ

bA}.

Lemma 2.12. ([20]) The functions int : S → S and cl : S → S have the following properties:

(1) A * int(B) implies ∃s ∈ S such that PsδaB and A * Qs.
(2) PsδaB implies int(B) ⊆ Qs.
(3) A 6δa B implies A ⊆ int(B).
(4) cl(A) * B implies ∃s ∈ S such that QsδbA and Ps * B.
(5) QsδbB implies Ps ⊆ cl(B).
(6) A 6δb B implies cl(B) ⊆ A.
(7) int(A) =

∨
{Ps | Ps 6δa A}.

(8) cl(A) =
⋂
{Qs | Qs 6δb A}.

(9) Ps 6δa B implies Ps ⊆ int(B).
(10) Qs 6δb B implies cl(B) ⊆ Qs.

Theorem 2.13. ([20]) Let δ = (δa, δb) be a diextremity on (S,S). The function int : S → S with int(A) =⋂
{Qs | PsδaA, s ∈ S} satisfies the axioms of interior operation and the function cl : S → S with cl(A) =∨
{Ps | QsδbA, s ∈ S} satisfies the axioms of closure operation.

Each diextremity induces a ditopology: if we set the families τ(δ) = {A ∈ S |A = int(A)} and κ(δ) = {A ∈ S |A =
cl(A)} then (τ(δ), κ(δ)) is a ditopology on (S,S). An extremial bicontinuous difunction is also bicontinuous with
respect to induced ditopologies.

If a complemented diextremity δ on (S,S, σ) is given then the ditopology induced by δ is also complemented.

Graded Ditopological Texture Spaces: ([7]) Let (S,S), (V,V) be textures and consider T ,K : S → V
satisfying

(GT1) T (S) = T (∅) = V
(GT2) T (A1) ∩ T (A2) ⊆ T (A1 ∩ A2) ∀A1,A2 ∈ S

(GT3)
⋂

j∈J T (A j) ⊆ T (
∨

j∈J A j) ∀A j ∈ S, j ∈ J

and

(GCT1) K (S) = K (∅) = V
(GCT2) K (A1) ∩K (A2) ⊆ K (A1 ∪ A2) ∀A1,A2 ∈ S

(GCT3)
⋂

j∈JK (A j) ⊆ K (
⋂

j∈J A j) ∀A j ∈ S, j ∈ J

Then T is called a (V,V)-graded topology, K a (V,V)-graded cotopology and (T ,K ) a (V,V)-graded
ditopology on (S,S). For any ditopological texture space (S,S,T ,K ,V,V) and for each v ∈ V let’s define
the families:

T
v = {A ∈ S | Pv ⊆ T (A)}, Kv = {A ∈ S | Pv ⊆ K (A)}.

Then (T v,Kv) is a ditopology on (S,S) for each v ∈ V. That is, if (S,S,T ,K ,V,V) is any graded ditopological
texture space, then there exists a ditopology (T v,Kv) on the texture space (S,S) for each v ∈ V.

If (S,S, σ) is a complemented texture and (T ,K ) a (V,V)-graded ditopology on (S,S), then (K ◦σ,T ◦σ)
is also a (V,V)-graded ditopology on (S,S). (T ,K ) is called complemented if (T ,K ) = (K ◦ σ,T ◦ σ).

Example 2.14. ([7]) Let (S,S, τ, κ) be a ditopological texture space and (V,V) the discrete texture on a
singleton. Take (V,V) = (1,P(1)) (The notation 1 denotes the set {0}) and define τ1 : S → P(1) by
τ1(A) = 1⇔ A ∈ τ. Then τ1 is a (V,V)-graded topology on (S,S). Likewise, κ1 defined by κ1(A) = 1⇔ A ∈ κ
is a (V,V)-graded cotopology on (S,S) and (τ1, κ1) is called the graded ditopology on (S,S) corresponding
to ditopology (τ, κ).
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Definition 2.15. ([7]) Let (Sk,Sk,Tk,Kk,Vk,Vk), k = 1, 2 be graded ditopological texture spaces and ( f ,F) :
(S1,S1) → (S2,S2), (h,H) : (V1,V1) → (V2,V2) be difunctions. For the pair (( f ,F), (h,H)), ( f ,F) is called
continuous with respect to (h,H) if

H←T2(A) ⊆ T1(F←A), for all A ∈ S2

and cocontinuous with respect to (h,H) if

h←K2(A) ⊆ K1( f←A), for all A ∈ S2.

The difunction ( f ,F) is called bicontinuous with respect to (h,H) if it is both continuous and cocontinuous
with respect to (h,H).

Theorem 2.16. ([7]) The class of graded ditopological texture spaces and relatively bicontinuous difunction pairs (in
the sense of Definition 2.15) between them form a category denoted by dfGDiTop.

The graded dineighborhood systems of the graded ditopological texture spaces were defined in [9].
From now on, we will use dinhd, shortly instead of dineighborhood. To avoid a long part of preliminaries
we will give the following equivalent proposition instead of the definition.

Proposition 2.17. ([9]) Let (T ,K ) be a (V,V)-graded ditopology on texture (S,S) and N : S[ →VS, M : S→VS

be mappings where N(s) = Ns : S → V for each s ∈ S[ and M(s) = Ms : S → V for each s ∈ S. Then (N,M) is a
graded dinhd system of the graded ditopological texture space (S,S,T ,K ,V,V) iff

Ns(A) =

{
sup{T (B) : Ps ⊆ B ⊆ A * Qs,B ∈ S}, A * Qs
∅, A ⊆ Qs

(1)

for each s ∈ S[, A ∈ S and

Ms(A) =

{
sup{K (B) : Ps * A ⊆ B ⊆ Qs,B ∈ S}, Ps * A
∅, Ps ⊆ A (2)

for each s ∈ S, A ∈ S.

Theorem 2.18. ([9]) Let (T ,K ) be a (V,V)-graded ditopology on texture (S,S). If (N,M) is the graded dinhd system
of graded ditopological texture space (S,S,T ,K ,V,V), then the following properties hold for all A,A1,A2 ∈ S:
(1) For each s ∈ S[;

(N1) Ns(A) , ∅ ⇒ A * Qs
(N2) Ns(∅) = ∅ and Ns(S) = V
(N3) A1 ⊆ A2 ⇒ Ns(A1) ⊆ Ns(A2)
(N4) A1 ∩ A2 * Qs ⇒ Ns(A1) ∧Ns(A2) ⊆ Ns(A1 ∩ A2)
(N5) Ns(A) ⊆ sup{

∧
s′∈B[ Ns′ (B) : Ps ⊆ B ⊆ A * Qs,B ∈ S}

(2) For each s ∈ S;
(M1) Ms(A) , ∅ ⇒ Ps * A
(M2) Ms(S) = ∅ and Ms(∅) = V
(M3) A1 ⊆ A2 ⇒Ms(A2) ⊆Ms(A1)
(M4) Ms(A1) ∧Ms(A2) ⊆Ms(A1 ∪ A2)
(M5) Ms(A) ⊆ sup{

∧
s′∈(S\B) Ms′ (B) : Ps * A ⊆ B ⊆ Qs,B ∈ S}

Theorem 2.19. ([9]) If the mappings N : S[ →VS, M : S→VS satisfy the conditions N1 −N4 and M1 −M4 in
Theorem 2.18, respectively, then the mappings TN,KM : S → V, defined by

TN(A) =
⋂
s∈A[

Ns(A) (3)

KM(A) =
⋂

s∈S\A

Ms(A) (4)

where A ∈ S, form a (V,V)-graded ditopology on texture (S,S).
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Definition 2.20. ([10]) Let (S,S), (V,V) be textures and DR = DRS denote the family of all direlations on
(S,S). A mapping U : DR→V is called a (V,V)-graded diuniformity on (S,S) if it satisfies:

(GU1) U(d,D) , ∅ ⇒ (i, I) v (d,D) for all (d,D) ∈ DR

(GU2) (d,D) v (e,E)⇒ U(d,D) ⊆ U(e,E) for all (d,D), (e,E) ∈ DR

(GU3) U(d,D) ∧ U(e,E) ⊆ U((d,D) u (e,E)) for all (d,D), (e,E) ∈ DR

(GU4) ∀(d,D) ∈ DR ∃(e,E) ∈ DR : U(d,D) ⊆ U(e,E) and (e,E) ◦ (e,E) v (d,D)

(GU5) ∀(d,D) ∈ DR ∃(c,C) ∈ DR : U(d,D) ⊆ U(c,C) and (c,C)← v (d,D)

(GU6)
∨
{U(d,D) | (d,D) ∈ DR} = V.

In this case, (S,S,U,V,V) is called a graded diuniform texture space.

Example 2.21. ([10]) (1) Let (S,S,U,V,V) be a graded diuniform texture space. Then the set Uv = {(d,D) ∈
DR | Pv ⊆ U(d,D)} , ∅ is a diuniformity on (S,S) for each v ∈ V[.

(2) IfU is a diuniformity on (S,S) then the mapping UU : DR→ P(1) defined by

UU(d,D) =

{
1, (d,D) ∈ U
∅, (d,D) <U

is a (1,P(1))-graded diuniformity on (S,S).

Definition 2.22. ([10]) Let (Sk,Sk,Uk,Vk,Vk), k = 1, 2 be graded diuniform texture spaces and ( f ,F) :
(S1,S1) → (S2,S2), (h,H) : (V1,V1) → (V2,V2) difunctions. If H←(U2(d,D)) ⊆ U1(( f ,F)−1(d,D)) for each
(d,D) ∈ DRS2 then ( f ,F) is called U1 - U2 uniformly bicontinuous with respect to (h,H).

Theorem 2.23. ([10]) Graded diuniform texture spaces and relatively uniformly bicontinuous difunction pairs
between them form a category that we will denote by dfGDiU.

Theorem 2.24. ([10]) Let (S,S,U,V,V) be a graded diuniform texture space. Then the mappings TU,KU : S → V
defined by

TU(A) =
⋂
t∈A[

∨
d[t]⊆A

U(d,D), KU(A) =
⋂

t∈S\A

∨
A⊆D[t]

U(d,D) (5)

where A ∈ S, form a (V,V)-graded ditopology (TU,KU) on (S,S).

3. Graded Diextremities

In this chapter, the concept of diextremity on textures will be generalized to the graded case. Moreover,
the relations of this new structure with graded ditopologies and graded diuniformities will be investigated.

Definition 3.1. Let (S,S), (V,V) be textures and ea, eb : S × S → V mappings. Then e = (ea, eb) is called a
(V,V)-graded diextremity on (S,S) if for all A,B,C ∈ S it satisfies:

(GE1) ea(A,B) , ∅ ⇒ A , ∅, B , S

(GE2) ea(A ∪ B,C) = ea(A,C) ∨ ea(B,C)

(GE3) ea(A,B ∩ C) = ea(A,B) ∨ ea(A,C)

(GE4) ∀A,B ∈ S ∃E ∈ S : ea(A,E) ∨ ea(E,B) ⊆ ea(A,B)

(GE5) ea(A,B) , V ⇒ A ⊆ B
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(GDE) eb(A,B) = ea(B,A)

(GCE1) eb(A,B) , ∅ ⇒ A , S, B , ∅

(GCE2) eb(A,B ∪ C) = eb(A,B) ∨ eb(A,C)

(GCE3) eb(A ∩ B,C) = eb(A,C) ∨ eb(B,C)

(GCE4) ∀A,B ∈ S ∃E ∈ S : eb(A,E) ∨ eb(E,B) ⊆ eb(A,B)

(GCE5) eb(A,B) , V ⇒ B ⊆ A.

In this case (S,S, e,V,V) is called a graded diextremial texture space; ea a (V,V)-graded extremity and eb a
(V,V)-graded co-extremity.

Let e = (ea, eb) be a (V,V)-graded diextremity on a complemented texture (S,S, σ). Define ė = (ėa, ėb) by

ėa(A,B) = eb(σ(A), σ(B)) and ėb(A,B) = ea(σ(A), σ(B))

where A,B ∈ S. Then ė is a (V,V)-graded diextremity on (S,S, σ). e is called complemented if e = ė.

Corollary 3.2. Let (S,S, e,V,V) be a graded diextremial texture space. For all A,B,C,D ∈ S we have

A ⊆ C⇒ ea(A,B) ⊆ ea(C,B), B ⊆ D⇒ ea(A,D) ⊆ ea(A,B) (6)

and

A ⊆ C⇒ eb(C,B) ⊆ eb(A,B), B ⊆ D⇒ eb(A,B) ⊆ eb(A,D). (7)

Example 3.3. (1) If δ = (δa, δb) is a diextremity on a texture (S,S) then the mappings eaδ, e
b
δ : S × S → P(1)

(The notation 1 denotes the set {0}) defined by

eaδ(A,B) =

{
1, AδaB
∅, A 6δa B (8)

and

ebδ(A,B) =

{
1, AδbB
∅, A 6δb B (9)

form a (1,P(1))-graded diextremity eδ = (eaδ, e
b
δ) on (S,S).

(2) If e = (ea, eb) is a (V,V)-graded diextremity on (S,S) then for each v ∈ V the relations defined by

Aδa
ev B⇔ Pv ⊆ e

a(A,B), Aδb
ev B⇔ Pv ⊆ e

b(A,B), ∀A,B ∈ S

describe a diextremity δev = (δa
ev
, δb
ev

) on (S,S).

Definition 3.4. Let (Sk,Sk, ek,Vk,Vk), k = 1, 2 be graded diextremial texture spaces and ( f ,F) : (S1,S1) →
(S2,S2), (h,H) : (V1,V1)→ (V2,V2) difunctions. ( f ,F) is called extremial bicontinuous with respect to (h,H)
if for all A,B ∈ S2; one of the following equivalent conditions is satisfied:

(i) ea1( f←A, f←B) ⊆ H←ea2(A,B)
(ii) eb1( f←A, f←B) ⊆ H←eb2(A,B).

Example 3.5. For a graded diextremial texture space (S,S, e,V,V); the identity difunction (iS, IS) on (S,S)
is extremial bicontinuous with respect to the identity difunction (iV, IV) on (V,V). Indeed, ea(i←S A, i←S B) =
ea(A,B) = I←V e

a(A,B) for all A,B ∈ S.
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Proposition 3.6. Relatively extremial bicontinuity is preserved under composition of difunctions.

Proof. Let (S j,S j, e j,V j,V j), j = 1, 2, 3 be graded diextremial texture spaces and ( f ,F) : (S1,S1) → (S2,S2),
(h,H) : (V1,V1) → (V2,V2), (1,G) : (S2,S2) → (S3,S3), (k,K) : (V2,V2) → (V3,V3) be difunctions where
( f ,F) is extremial bicontinuous with respect to (h,H) and (1,G) is extremial bicontinuous with respect to
(k,K). For all A,B ∈ S3 we have;

ea1((1 ◦ f )←A, (1 ◦ f )←B) = ea1( f←(1←A), f←(1←B)) ⊆ H←ea2(1←A, 1←B)
⊆ H←(K←ea3(A,B)) = (K ◦H)←ea3(A,B).

Hence (1,G) ◦ ( f ,F) is extremial bicontinuous with respect to (k,K) ◦ (h,H).

Corollary 3.7. Graded diextremial texture spaces and relatively extremial bicontinuous difunction pairs between
them form a category that we will denote by dfGDiE.

Proposition 3.8. Let (S,S, e,V,V) be a graded diextremial texture space and define the mappings Ne : S[ → VS,
Me : S→VS where Ne(s) = Nes : S → V for each s ∈ S[ and Me(s) = Me

s : S → V for each s ∈ S by

Nes (A) =

{
sup{Pv : Pv ∩ e

a(Ps,A) = ∅}, A * Qs
∅, A ⊆ Qs

(10)

and

Me
s(A) =

{
sup{Pv : Pv ∩ e

b(Qs,A) = ∅}, Ps * A
∅, Ps ⊆ A (11)

for each A ∈ S. Then the mappings Ne,Me satisfy the properties N1 −N4 and M1 −M4.

Proof. (N1) is clear.
(N2): Since ∅ ⊆ Qs, S * Qs and ea(Ps,S) = ∅ by (GE1) for all s ∈ S[ we have Nes (∅) = ∅ and Nes (S) = sup{Pv :
Pv ∩ e

a(Ps,S) = ∅} = sup{Pv : Pv ∩ ∅ = ∅} = V.
(N3): Let A1,A2 ∈ S and A1 ⊆ A2. If A1 ⊆ Qs then we have Nes (A1) = ∅ ⊆ Nes (A2). If A1 * Qs then we get
A2 * Qs and ea(Ps,A2) ⊆ ea(Ps,A1) by Corollary 3.2. Thus Nes (A1) = sup{Pv : Pv ∩ e

a(Ps,A1) = ∅} ⊆ sup{Pv :
Pv ∩ e

a(Ps,A2) = ∅} = Nes (A2) is obtained.
(N4): Let A1 ∩ A2 * Qs. Then A1,A2 * Qs. Since every texture is a completely distributive lattice and
thus satisfies join infinite distributivity and also by using (GE3) we obtain Nes (A1) ∧ Nes (A2) = sup{Pv :
Pv ∩ e

a(Ps,A1) = ∅} ∧ sup{Pt : Pt ∩ e
a(Ps,A2) = ∅} = sup{Pv ∩ Pt : Pv ∩ e

a(Ps,A1) = ∅, Pt ∩ e
a(Ps,A2) = ∅} =

sup{Pr : Pr ∩ (ea(Ps,A1) ∨ ea(Ps,A2)) = ∅} = sup{Pr : Pr ∩ e
a(Ps,A1 ∩ A2) = ∅} = Nes (A1 ∩ A2).

The proof of M1 −M4 is similar.

Corollary 3.9. Let (S,S, e,V,V) be a graded diextremial texture space. Then the mappings Te,Ke : S → V defined
by

Te(A) =
⋂
s∈A[

Nes (A) =
⋂
s∈A[

∨
Pv∩ea(Ps,A)=∅

Pv, (12)

Ke(A) =
⋂

s∈S\A

Me
s(A) =

⋂
s∈S\A

∨
Pv∩eb(Qs,A)=∅

Pv (13)

where A ∈ S, form a (V,V)-graded ditopology (induced by e) (Te,Ke) on (S,S).

Proof. It is clear from Theorem 2.19.
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Theorem 3.10. Let (S,S, e,V,V) be a graded diextremial texture space and σ be a grounded complementation on
(S,S). If e is complemented then the graded ditopology induced by e is also complemented.

Proof. Since e is complemented, for any set A ∈ Swe have

Ke(σ(A)) =
⋂

s∈S\σ(A)

∨
Pv∩eb(Qs,σ(A))=∅

Pv =
⋂

Ps*σ(A)

∨
Pv∩ea(σ(Qs),σ(σ(A)))=∅

Pv =
⋂

A*Qσ(s)

∨
Pv∩ea(Pσ(s),A)=∅

Pv

=
⋂
σ(s)∈A[

∨
Pv∩ea(Pσ(s),A)=∅

Pv = Te(A)

and so Ke ◦ σ = Te. Similarly it can be shown that Te ◦ σ = Ke. Therefore we obtain that (Te,Ke) is
complemented.

Theorem 3.11. Let (Sk,Sk, ek,Vk,Vk), k = 1, 2 be graded diextremial texture spaces and ( f ,F) : (S1,S1)→ (S2,S2),
(h,H) : (V1,V1) → (V2,V2) difunctions. If ( f ,F) is e1 - e2 extremial bicontinuous with respect to (h,H) then it is
(Te1 ,Ke1 ) - (Te2 ,Ke2 ) bicontinuous with respect to (h,H) with the notations given in Corollary 3.9.

Proof. Let ( f ,F) be e1 - e2 extremial bicontinuous with respect to (h,H). Suppose that ( f ,F) is not (Te1 ,Ke1 ) -
(Te2 ,Ke2 ) continuous with respect to (h,H). Then H←Te2 A * Te1 F←A for some A ∈ S2. So, using Theorem
2.1(5), there exists v0 ∈ V1 such that H←Te2 A * Qv0 and Pv0 * Te1 (F←A). Thus, using Propositions 2.4 and
2.7 we have

H←Te2 A * Qv0 ⇒ H←(
⋂
t∈A[

∨
Pv∩e

a
2(Pt,A)=∅

Pv) * Qv0

⇒

⋂
t∈A[

∨
Pv∩e

a
2(Pt,A)=∅

H←Pv * Qv0

and so there exists vt ∈ V2,

”Pvt ∩ e
a
2(Pt,A) = ∅ and H←Pvt * Qv0 ” for all t ∈ A[. (14)

On the other hand, we have

Pv0 * Te1 (F←A)⇒ Pv0 *
⋂

s∈(F←A)[

∨
Pv∩e

a
1(Ps,F←A)=∅

Pv

and so, there exists s1 ∈ (F←A)[ such that ”Pv ∩ e
a
1(Ps1 ,F←A) = ∅ ⇒ Pv ⊆ Qv0 ”. Thus, we have

”Pv * Qv0 ⇒ Pv ∩ e
a
1(Ps1 ,F

←A) , ∅” for some s1 ∈ (F←A)[. (15)

Since s1 ∈ (F←A)[ = F←(
∨

t∈A[ Pt)[ = F←(
⋃

t∈A[ P[t ) =
⋃

t∈A[ F←(P[t ) ⊆
⋃

t∈A[ F←Pt there exists t0 ∈ A[ such
that Ps1 ⊆ F←Pt0 .

On the other hand, because of t0 ∈ A[, using (14) there exists vt0 ∈ V2 such that ”Pvt0
∩ ea2(Pt0 ,A) = ∅

and H←Pvt0
* Qv0 ”. Moreover H←Pvt0

* Qv0 implies that there exists v1 ∈ V1 such that Pv1 ⊆ H←Pvt0
and

Pv1 * Qv0 . From (15) we get Pv1 ∩ e
a
1(Ps1 ,F←A) , ∅ and so, there exists v2 ∈ Pv1 such that Pv2 ⊆ e

a
1(Ps1 ,F←A).

Since ( f ,F) is e1 - e2 extremial bicontinuous with respect to (h,H), using Corollary 3.2 we obtain that

Pv2 ⊆ e
a
1(Ps1 ,F

←A) ⊆ ea1(F←Pt0 ,F
←A) ⊆ H←ea2(Pt0 ,A). (16)

Recall that Pv1 ⊆ H←Pvt0
and v2 ∈ Pv1 so we get Pv2 ⊆ H←Pvt0

. Using (16), Lemma 2.3. and recalling the fact
that Pvt0

∩ ea2(Pt0 ,A) = ∅, we have Pv2 ⊆ H←Pvt0
∩H←ea2(Pt0 ,A) = H←(Pvt0

∩ ea2(Pt0 ,A)) = H←(∅) = ∅. However,
this result leads the contradiction Pv2 ⊆ ∅. Thus, ( f ,F) is (Te1 ,Ke1 ) - (Te2 ,Ke2 ) continuous with respect to
(h,H).

Similarly, it can be shown the cocontinuity part of the proof.
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Proposition 3.12. Let (S,S,U,V,V) be a graded diuniform texture space and define the mappings ea
U
, eb
U

: S×S →
V by

ea
U

(A,B) =
∨

Pv*ϕa
U

(A,B)

Pv and eb
U

(A,B) =
∨

Pv*ϕb
U

(A,B)

Pv

where

ϕa
U

(A,B) =
∨
{U(d,D) : d→A ⊆ B} and ϕb

U
(A,B) =

∨
{U(d,D) : B ⊆ D→A}

for all A,B ∈ S. Then the mapping eU = (ea
U
, eb
U

) is a (V,V)-graded diextremity (induced by the graded diuniformity
U) on (S,S).

Proof. (GE1) If A = ∅ or B = S then we have ϕa
U

(A,B) = V by (GU6) and so ea
U

(A,B) = ∅.
(GE2) Using the fact that d→(A ∪ B) = d→A ∪ d→B we have ϕa

U
(A ∪ B,C) = ϕa

U
(A,C) ∧ ϕa

U
(B,C) and so

ea
U

(A ∪ B,C) = ea
U

(A,C) ∨ ea
U

(B,C).
(GE3) Considering d→A ⊆ (B ∩ C) ⇔ d→A ⊆ B and d→A ⊆ C we have ϕa

U
(A,B ∩ C) = ϕa

U
(A,B) ∧ ϕa

U
(A,C)

and so ea
U

(A,B ∩ C) = ea
U

(A,B) ∨ ea
U

(A,C).
(GE4) For each (d,D) ∈ DR there exists (r,R) ∈ DR such that U(d,D) ⊆ U(r,R) and (r,R) ◦ (r,R) v (d,D) by
(GU4). So, if d→A ⊆ B then we have (r,R) ∈ DR such that U(d,D) ⊆ U(r,R) and r→(r→A) ⊆ d→A ⊆ B. Now,
applying r← we get r←r→(r→A) ⊆ r←B and r→A ⊆ r←B. If we denote r←B by E then we have r→A ⊆ E and
r→E ⊆ B by the fact that r→r←B ⊆ B. Therefore, considering U(d,D) ⊆ U(r,R) we obtain ϕa

U
(A,B) ⊆ ϕa

U
(A,E)

and ϕa
U

(A,B) ⊆ ϕa
U

(E,B). Thus ea
U

(A,E) ∨ ea
U

(E,B) ⊆ ea
U

(A,B).
(GE5) If ea

U
(A,B) , V then we have ϕa

U
(A,B) , ∅ and so, there exist a direlation (d,D) such that U(d,D) , ∅

and d→A ⊆ B. On the other hand, since U(d,D) , ∅ we have (i, I) v (d,D) by (GU1). Thus we get
A = i→A ⊆ d→A ⊆ B and A ⊆ B.
(GDE) It is sufficient to show that ϕa

U
(A,B) = ϕb

U
(B,A). Let d→A ⊆ B for a direlation (d,D). Then there exists

a direlation (c,C) such thatU(d,D) ⊆ U(c,C) and (c,C)← v (d,D) by (GU5). Since d→A ⊆ B, using Lemma 2.3.
(4) we have A ⊆ d←(d→A) ⊆ d←B and so A ⊆ d←B. Since (c,C)← v (d,D) we get C← ⊆ d and so using Lemma
2.3. (3), d← ⊆ C. Thus we obtain A ⊆ C→B by A ⊆ d←B. Since U(d,D) ⊆ U(c,C) we get ϕa

U
(A,B) ⊆ ϕb

U
(B,A).

Similarly, it can be shown that ϕb
U

(B,A) ⊆ ϕa
U

(A,B).
The proof of (GCE1)-(GCE5) is similar and so omitted.

Lemma 3.13. ([14, Proposition 6.13]) Let (Sk,Sk), k = 1, 2 be texture spaces, ( f ,F) : (S1,S1) → (S2,S2) a
difunction and (d,D) ∈ DRS2 . If P(s1,s2) * F and d[s2] ⊆ A for s1 ∈ S1, s2 ∈ S2, A ∈ S2 then ( f ,F)−1(d)[s1] ⊆ F←A.

Lemma 3.14. Let ( f ,F) : (S1,S1)→ (S2,S2) be a difunction and (r,R) a direlation on (S2,S2). Then

(i) r→A ⊆ B⇒ ( f ,F)−1(r)( f←A) ⊆ f←B
(ii) B ⊆ R→A⇒ F←B ⊆ ( f ,F)−1(R)(F←A)

for all A,B ∈ S2.

Proof. (i) Let r→A ⊆ B and s ∈ ( f←A)[. Then we have f←A = F←A * Qs. Recall that F←A =
⋂
{Qs | ∀t,P(s,t) *

F ⇒ A ⊆ Qt} so, there exists t0 ∈ S2 such that P(s,t0) * F and A * Qt0 . Since A * Qt0 we get Pt0 ⊆ A
and so r[t0] ⊆ r→A ⊆ B. Thus we have P(s,t0) * F and r[t0] ⊆ B. Now considering Lemma 3.13. we have
( f ,F)−1(r)[s] ⊆ f←B for each s ∈ ( f←A)[. Therefore we obtain that ( f ,F)−1(r)( f←A) = ( f ,F)−1(r)(

∨
s∈( f←A)[ Ps) =∨

s∈( f←A)[ ( f ,F)−1(r)Ps =
∨

s∈( f←A)[ ( f ,F)−1(r)[s] ⊆ f←B.

(ii) Similar to (i).

Theorem 3.15. Let (Sk,Sk,Uk,Vk,Vk), k = 1, 2 be graded diuniform texture spaces and ( f ,F) : (S1,S1)→ (S2,S2),
(h,H) : (V1,V1)→ (V2,V2) difunctions. If ( f ,F) is U1 - U2 uniformly bicontinuous with respect to (h,H) then it is
eU1 - eU2 extremial bicontinuous with respect to (h,H).
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Proof. Let ( f ,F) be U1 - U2 uniformly bicontinuous and suppose that ( f ,F) is not eU1 - eU2 extremial bi-
continuous with respect to (h,H). Then ea

U1
( f←A, f←B) * H←(ea

U2
(A,B)) for some A,B ∈ S2 and it fol-

lows that
∨

Pv*ϕa
U1

( f←A, f←B) Pv * H←(
∨

Pt*ϕa
U2

(A,B) Pt) for some A,B ∈ S2. So there exists v ∈ V1 such that

Pv * ϕa
U1

( f←A, f←B) and Pv * H←(
∨

Pt*ϕa
U2

(A,B) Pt).
Since Pv * ϕa

U1
( f←A, f←B) we have ”d→( f←A) ⊆ f←B ⇒ Pv * U1(d,D)” and so ”d→( f←A) ⊆ f←B ⇒

U1(d,D) ⊆ Qv” for all (d,D) ∈ DRS1 . Thus we get:

∨
d→( f←A)⊆ f←B

U1(d,D) ⊆ Qv. (17)

On the other hand, Pv * H←(
∨

Pt*ϕa
U2

(A,B) Pt) implies that Pv * (
∨

Pt*ϕa
U2

(A,B) H←Pt) and so
∨

Pt*ϕa
U2

(A,B) H←Pt ⊆

Qv. This implies that ”Pt * ϕa
U2

(A,B)⇒ H←Pt ⊆ Qv”. Hence we have

Pt *
∨

r→A⊆B, (r,R)∈DRS2

U2(r,R)⇒ H←Pt ⊆ Qv

and it follows that ”H←Pt * Qv ⇒ Pt ⊆
∨

r→A⊆B, (r,R)∈DRS2
U2(r,R)”. Since ( f ,F) is U1 - U2 uniformly

bicontinuous with respect to (h,H), by considering Lemma 3.14. we obtain that

H←Pt * Qv ⇒ H←Pt ⊆ H←
∨

r→A⊆B

U2(r,R) =
∨

r→A⊆B

H←U2(r,R)

⊆

∨
r→A⊆B

U1(( f ,F)−1(r,R))

⊆

∨
d→ f←A⊆ f←B

U1(d,D).

Therefore we have H←Pt * Qv ⇒ H←Pt ⊆
∨

d→ f←A⊆ f←B U1(d,D). So, by recalling (17) we get the contradiction
”H←Pt * Qv ⇒ H←Pt ⊆ Qv.” Thus, ( f ,F) is eU1 - eU2 extremial bicontinuous with respect to (h,H).

Theorem 3.16. Let (S,S,U,V,V) be a graded diuniform texture space. Then we have

(TeU ,KeU ) ⊆ (TU,KU).

Proof. Let A ∈ S. By recalling Corollary 3.9 and Theorem 2.24, we have TeU (A) =
⋂

s∈A[

∨
Pv∩e

a
U

(Ps,A)=∅ Pv

and TU(A) =
⋂

s∈A[

∨
d[s]⊆A U(d,D). So it is sufficient to show that

∨
Pv∩e

a
U

(Ps,A)=∅ Pv ⊆
∨

d[s]⊆A U(d,D) for each
s ∈ A[.

Let s ∈ A[ and Pv ∩ e
a
U

(Ps,A) = ∅. Then by using Proposition 3.12 we get Pv ⊆ ϕa
U

(Ps,A) =
∨

d[s]⊆A U(d,D).
So, we obtain that TeU ⊆ TU.

Similarly, it can be shown thatKeU ⊆ KU.

4. The Relations of the Category dfGDiE with Some Other Categories

In this section we investigate the relations of the category dfGDiE with the categories dfGDiU,
dfGDiTop, dfDiE, dfDiU, dfDiTop. Our reference for category theory is [1].

Proposition 4.1. ([20]) LetU be a diuniformity on the texture (S,S). Define

AδaB⇔ d→A * B ∀(d,D) ∈ U and AδbB⇔ B * D→A ∀(d,D) ∈ U.

Then δ = (δa, δb) is a diextremity on (S,S).
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Theorem 4.2. ([20]) The diextremity defined in Proposition 4.1 is called the diextremity induced on (S,S) byU, or
the induced diextremity for short, and is denoted by δU = (δa

U
, δb
U

). A uniformly bicontinuous difunction is also
extremial bicontinuous with respect to the induced diextremities.

Corollary 4.3. With the above notations, the mapping F1 : dfDiU→ dfDiE defined by

F1(( f ,F) : (S1,S1,U1)→ (S2,S2,U2)) = (( f ,F) : (S1,S1, δU1 )→ (S2,S2, δU2 ))

is a faithful and full functor.

Proof. By recalling Proposition 4.1 and Theorem 4.2 we get that F1 is a functor. Because of the definition of
F1, it is a faithful and full functor.

Corollary 4.4. With the above notations, the mapping F2 : dfDiE→ dfDiTop defined by

F2(( f ,F) : (S1,S1, δ1)→ (S2,S2, δ2)) = (( f ,F) : (S1,S1, τδ1 , κδ1 )→ (S2,S2, τδ2 , κδ2 ))

is a faithful and full functor.

Proof. By Theorem 2.13, we get that F2 is a functor. Because of the definition of F2, it is a faithful and full
functor.

Theorem 4.5. ([7]) The functor H1 : dfDiTop→ dfGDiTop defined by

H1(( f ,F) : (S1,S1, τ1, κ1)→ (S2,S2, τ2, κ2)
= (( f ,F), (i1, I1)) : (S1,S1, τ

1

1, κ
1

1, 1,P(1))→ (S2,S2, τ
1

2, κ
1

2, 1,P(1))

is an embedding of the category dfDiTop as a full subcategory dfGDiTop(1,P(1)) of the category dfGDiTop.

Theorem 4.6. ([10]) The functor H2 : dfDiU→ dfGDiU defined by

H2(( f ,F) : (S1,S1,U1)→ (S2,S2,U2)
= (( f ,F), (i1, I1)) : (S1,S1,UU1 , 1,P(1))→ (S2,S2,UU2 , 1,P(1))

is an embedding of the category dfDiU as a full subcategory dfGDiU(1,P(1)) of the category dfGDiU.

Theorem 4.7. The mapping H3 : dfDiE→ dfGDiE defined by

H3(( f ,F) : (S1,S1, δ1)→ (S2,S2, δ2)
= (( f ,F), (i1, I1)) : (S1,S1, eδ1 , 1,P(1))→ (S2,S2, eδ2 , 1,P(1))

is an embedding of the category dfDiE as a full subcategory dfGDiE(1,P(1)) of the category dfGDiE.

Proof. Since an extremial bicontinuous difunction ( f ,F) : (S1,S1, δ1) → (S2,S2, δ2) is eδ1 − eδ2 extremial
bicontinuous with respect to (i1, I1), H3 is a functor. H3 is also a full embedding from Example 3.3 (1),
Definition 3.4 and the definition of extremial bicontinuity.

Theorem 4.8. With the above notations, G1 : dfGDiU→ dfGDiE defined by

G1((( f ,F), (h,H)) : (S1,S1,U1,V1,V1)→ (S2,S2,U2,V2,V2))
= (( f ,F), (h,H)) : (S1,S1, eU1 ,V1,V1)→ (S2,S2, eU2 ,V2,V2)

is a faithful and full functor.

Proof. By Proposition 3.12 and Theorem 3.15 we have the fact thatG1 is a functor. Because of the definition
of G1, it is a faithful and full functor.
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Theorem 4.9. With the above notations, G2 : dfGDiE→ dfGDiTop defined by

G2((( f ,F), (h,H)) : (S1,S1, e1,V1,V1)→ (S2,S2, e2,V2,V2))
= (( f ,F), (h,H)) : (S1,S1,Te1 ,Ke1 ,V1,V1)→ (S2,S2,Te2 ,Ke2 ,V2,V2)

is a faithful and full functor.

Proof. By Corollary 3.9 and Theorem 3.11 we have the fact that G2 is a functor. Besides, from the definition
of G2, it is a faithful and full functor.

Consequently, we have the diagram

dfDiU

H2

��

F1 // dfDiE

H3

��

F2 // dfDiTop

H1

��

dfGDiU
G1 // dfGDiE

G2 // dfGDiTop

where F1,F2,G1,G2 are faithful and full functors; also, H1,H2,H3 are embeddings.

5. Conclusion

The concept of proximity as a kind of ”nearness relation” provides an extensive perspective to the
theory of topology; for instance, there is a one to one correspondence between the proximities and the
totally bounded uniformities on a set.

Since the textures are complement free structures; Yıldız and Ertürk introduced the concept of diex-
tremity, as an alternative suitable ”nearness relation” to proximities on textures in [20]. The relationship of
diextremities with dimetrics and diuniformities is also investigated in [20].

In this study, graded diextremity is introduced as a generalization of diextremities on textures to the
graded case. As expected, each graded diuniformity induces a graded diextremity and each graded
diextremity induces a graded ditopology (see Proposition 3.12 and Corollary 3.9, resp.). In Section 4, this
new structure is investigated with some categorical aspects; the relations of the category dfGDiE with the
categories dfGDiU, dfGDiTop, dfDiE, dfDiU, dfDiTop are studied.

Clearly, graded diextremities can be useful to discover new properties of graded ditopological texture
spaces and for deeper investigation of the theory of graded ditopology.
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