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The productivity of high speed milling operations is limited by the onset of self-excited vibrations known as
chatter. Unless avoided, chatter vibrations may cause large dynamic loads damaging the machine spindle,
cutting tool, or workpiece and leave behind a poor surface finish. The cutting force magnitude is proportional
to the thickness of the chip removed from the workpiece. Many researchers focused on the development of
analytical and numerical methods for the prediction of chatter. However, the applicability of these methods in
industrial conditions is limited, since they require accurate modelling of machining system dynamics and of
cutting forces. In this study, chatter prediction was investigated for orthogonal cutting in turning operations.
Therefore, the linear analysis of the single degree of freedom (SDOF) model was performed by applying
oriented transfer function (OTF) and \tau decomposition form to Nyquist criteria. Machine chatter frequency
predictions obtained from both forms were compared with modal analysis and cutting tests.
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1. Introduction

Machine tool chatter is a self-excited vibration problem occurring in
large rates of material removal, resulting from the unavoidable flexibility
between the cutting tool and workpiece. When uncontrolled, chatter
causes the rough surface end and dimensional inaccuracy of the
workpiece, along with unacceptably loud noise levels and accelerated
tool wear. In general, chatter is one of the most critical limiting factors,
which is considered in designing a manufacturing process. The cutting
force becomes periodically variable, reaching considerable amplitudes
and the machined surface becomes undulated. There are two main
sources of self-excitation in metal cutting. These are mode coupling and
regeneration of waviness on machined surface [1,2]. Studies of chatter
datebackoverhalf a century suchas thosebyMerchant [3] andArnold [4].
Basic understanding of the problem, including the mechanism of surface
regeneration, mode coupling and association with structural dynamics,
was postulatedmore recently by Tobias [5] and Koenigsberger and Tlusty
[6], Tlusty [7], and Anderson et al. [8]. Their studies with numerous
respective collaborators provided the frame of the current chatter
research.

Nowadays, researchers brought forward analysis and control techni-
ques through various models for the prediction of chatter vibrations. But
since the mechanics and dynamics of cutting could not be put forward
satisfactorily, a complicated model that is capable of expressing metal
removal dynamics does not exist properly yet. Analysis of chatter
vibrations is realized by the process of linear and nonlinear forces. All
chatter analysis techniques begin with a model of the machining force
process and a model of the tool-workpiece structure. These two models
are combined to form a closed-loop dynamical model of the machining
operation. Analysis techniques are used to generate so-called stability
lobe diagrams (SLDs): plots of the stable and unstable regions in the
cutting parameter space. There are two techniques that may be used to
generate SLDs. These are Nyquist criterion and Time Domain Simulation
(TDS) techniques. The Nyquist criterion is applied to determine if the
cutting conditions are stable. The depth of cut is adjusted and the
procedure is repeated until the critical value is determined. In TDS
technique, the closed-loop dynamical model of the machining operation
is simulated for a particular set of cutting conditions. Steady state tool/
workpiece displacement and machining force signals are examined to
determine system stability. Displacement of the tool according to the
workpiece and signals of cutting force is investigated for the determi-
nation of system stability. Thus, effort is given to determine the critical
depth of cut which provides the best stability [9–13]. One of the most
important superiority of TDS is that it covers nonlinear characteristics
concerned in chatter analysis. Its disadvantage, however, are those
simulations involving numerous runs that make the calculation difficult,
and even theremaybe excessive loss of time. Due to these disadvantages,
efforts to develop analytical methods in plotting SLD are still made by
researchers, and new analytical methods have been devised [14–17]. In
this study, chatter prediction was investigated for orthogonal cutting in
turning operations. Machine chatter vibrations were predicted in
orthogonal cutting with SDOF turning system by two analytical forms.
Firstly, this cutting process was modeled according to OTF and τ
decomposition forms. Then, stability of this system was investigated by
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applying OTF and τ decomposition form to Nyquist criteria. Finally,
results obtained fromboth formswere comparedwith themodal analysis
conducted and the results of cutting tests in [18].

2. Modeling of the cutting system

Machine chatter prediction and stability analysis are conducted for
a turning process with SDOF. Since the dynamic cutting operations are
very complicated, the turning system which is investigated in this
study was simplified by modeling mass-spring-damper as it is seen in
Fig. 1.

The equation of motion of the cutting system in the feed direction
(y) was formed as follows,

myy
::
tð Þ + cy ẏ tð Þ + kyy tð Þ = Fy tð Þ ð1Þ

where Fy(t), Fy(t)=-F(t)cos β can be written in terms of the cutting
force and this is;

Fy tð Þ = a Kf h tð Þ ð2Þ

can be expressed by a, chip width (mm); Kf, specific cutting energy of
the material (N/m2) and h(t), instantaneous chip thickness. Instan-
taneous chip thickness, however;

h tð Þ = h0 � y tð Þ + y t � τð Þ ð3Þ

can be written clearly according to the geometry in Fig. 1. Term [y(t)-
y(t-τ)] is the dynamic chip thickness produced owing to vibrations at
the present time (t) and one spindle revolution period (T) before.
With the help of these equations, chatter prediction of the cutting
system was investigated analytically by OTF and τ decomposition,
respectively.

2.1. Oriented transfer function

Oriented transfer function of the SDOF in Fig. 1 is obtained from
Eqs. (1) to (3) [1].

myy
::
tð Þ + cy ẏ tð Þ + kyy tð Þ = Fy tð Þ = aKf h tð Þ ð4Þ

If equation of motion is written in Laplace domain, in order for the
OTF between chip depth of the system y(t), which is being removed
now, and the force in the feed direction will be written,

mys
2y sð Þ + cys y sð Þ + kyy sð Þ = Fy sð Þ ð5Þ
Fig. 1. Modelling of SDOF system in turning.
Where, as seen in Fig. 2, transfer function of the open-loop
between y(s) and Fy(s), can be written as follows,

G sð Þ = y sð Þ
Fy sð Þ =

1
ms2 + cs + k

ð6Þ

on the other hand, closed-loop transfer function between dynamic
and reference chip loads is obtained by taking Laplace transformation
of Eq. (3) and substitution of y(s)=G(s)·Fy(s) into h(s);

h sð Þ
h0 sð Þ =

1
1 + aKf G sð Þ 1� e�τ sð Þ ð7Þ

Closed-loop transfer function between y(s) and h0(s) is written as
Eq. (4)

myy
::
tð Þ + cy ẏ tð Þ + kyy tð Þ = aKf h0 � y tð Þ + y t � τð Þ½ � ð8Þ

and the formula applying Laplace transformation on both sides can be
written as follows,

y sð Þ
h0 sð Þ =

aKf G sð Þ
1 + aKf G sð Þ 1� e�τsð Þ ð9Þ

Denominators of Eqs. (7) and (9) are the characteristic equation of
the system.

2.2. τ-Decomposition form

The cutting force, which changes in the course of time, propor-
tionally with the surface area of the chip removed from the surface, is
a general acceptance of linear modeling. For this reason, the constant
component of the cutting force is neglected but variable component
produced by dynamic chip load is taken into account. According to
this calculation, the variable force can be written as,

Fv tð Þ = aKf y tð Þ � y t � τð Þ½ � ð10Þ

This is shown in the block diagram in Fig. 3.
In the diagram, Fm is the average cutting force, Hm is average chip

load. Where, Eq. (1) can be written as follows;

myy
::
tð Þ + cy ẏ tð Þ + kyy tð Þ = � F tð Þ cosβ ð11Þ

if the equation for τ decomposition form is written independent of
time and according to the course taken by the relative movement of
tool tip to the workpiece,

l = V t + x ð12Þ

where, V is the linear speed in the rotation direction of the workpiece
(m/s), x is the displacement of tool tip independently from workpiece
on the axis x during cutting (m). When the derivative of Eq. (10) is
taken as time related,

dl
dt

= V + ẋ≈V ð13Þ
Fig. 2. Block diagram of chip depth for the turning system with SDOF.
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Fig. 3. Block diagram of cutting forces for the turning system with SDOF.
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where, ẋð Þ was neglected, since, according to linear speed, it has no
significant value for linear modeling. Eq. (11) with these simplifica-
tions;

ẏ tð Þ = dy
dt

=
dy
dl

dl
dt

= V + ẋð Þ dy
dl

≈V
dy
dl

→y″ =
dy
dl

y
::
tð Þ = d2y

dt2
=

d
dt

V + ẋð Þ dy
dl

� �
= x

:: dy
dl

+ V + ẋð Þ d
2y
dl2

dl
dt

≈V2 d2y
dl2

→y″ =
d2y
dl2

the following equation is obtained,

md V2y″ + cVy′ + k y = � aKf y lð Þ � y l� πdlð Þ½ � cosβ ð14Þ

thus, according to constant (l) equation of motion is obtained instead
of time dependent one, τ. If both sides of Eq. (14) are reduced for
simplification,

c1 =
c

mV
k1 =

k
mV2 F1 =

�aKf cosβ

mV2

and if these values are placed and the equation is equaled to zero, and
if Laplace transformation is applied, the characteristic equation of the
system is obtained,

s2 + c1 s + k1 � F1ð Þ + F1 e
�sdπ = 0 ð15Þ

with further simplification, a2 = 1
F1
; a1 = c1

.
F1
;a0 = k1�F1ð Þ.

F1

.
are obtained.

esdπ =
�1

a2 s
2 + a1 s + a0

ð16Þ

According to the Nyquist criteria, the right side of this equation
expresses Nyquist plane curve U2(s) and the left side expresses critical
orbit U1(s). If s= jω is taken in the equation, the roots of the
characteristic Eq. (16) is found by equalizing the magnitude of the
right side of the equation to 1,

1
j �a2ω

2 + a0
� �

+ j a1ωj = 1;

a22d ω
4 + �2d a2d a0 + a21

� �
d ω2 + a20 � 1 = 0

ð17Þ

Thus, the positive real root of this equation gives the chatter
frequency of the system.

3. Investigating of the stability for cutting system

Two methods are used for the determination of stable areas for
chatter-free spindle speed or the system of spindle/tool holder/
cutting tool. The first method is the determination of the natural
frequency of the system and mode shapes by measuring transfer
functions by using an impact hammer and accelerometer. Analytical
predictions of performance can be done by using this information. The
second method is performed of cutting tests. The method gives the
cutting ability of spindle/cutting tool in a better completeness, but
requires a number of tests to be performed. The first analysis
technique is based on the investigation of stability and plotting the
SLD from the solution of the characteristic equation of the system
depending on the critical parameters such as axial cutting depth of the
system and spindle speed. Two chatter analysis techniques are used in
plotting SLDs. The first technique is Nyquist technique, which has
been used by many researchers so far. According to this technique,
stability of the technique is investigated in accordance with cutting
conditions that are taken as basis (i.e. depth of cut and spindle speed)
by constructing the characteristic equation of the system, and the
procedure is repeated until the critical value which provides stability
is determined. The second technique is the TDS, in which cutting
conditions of the cutting operation of the closed-loop dynamic model
are stimulated for a chosen group. In this technique, tool/work piece
displacement which continually change and signals of machining
force are examined until marginal stability is obtained according to
a chosen critical parameter (i.e. cutting depth). Since the technique
involves most outstanding aspects like nonlinear characteristics of
cutting operation, it is a more effective technique for analysis. But it
also has disadvantages mentioned before. Also, in studies conducted
so far in the field of SLD drawings, at least one difference has been
observed between analytic predictions and TDS techniques [1,11].
Analytic prediction is realized by iterative analytical solution of time-
changing force coefficient of mathematical model formed by applying
it to the distribution of Fourier series. This analysis is made with
the acceptance that the force process is linear according to feed and
depth which doesn't depend clearly on cutting speed. Additionally,
studies have been made recently to mount a sensor/actuator on the
tool/tool holder system on the machine tool designed to suppress
chatter vibration [13,19,20]. In the cutting process dealt with in this
section, SLDs, which give stable and unstable cutting regions for
chatter-free cutting, will be drawn according to two different forms
explained in the previous section depending on cutting depth and
spindle speed.

3.1. According to oriented transfer function

If the denominator of Eq. (7), which is the characteristic equation
of the system, is equaled to zero,

1 + alimKf G sð Þ 1� e�τ s� �
= 0 ð18Þ

where, alim, means chatter-free maximum cutting depth. The roots of
this characteristic equation will give the chatter frequency of the
system in the form of s=σ+ jω. When the real part of the roots is zero
(s= jω), the system is critically stable and workpiece oscillates with
constant vibration amplitude at chatter frequency (ω). If s= jω is
placed in characteristic equation for critical borderline stability
analysis, Eq. (18), can be written as,

1 + alim Kf G jωð Þ 1� e�τ jω
� �

= 0 ð19Þ

when it is placed in Eq. (19) in the form of real and imaginary parts G
( jω)=Re+ jIm, characteristic equation can be written in the form of
real and imaginary parts, {1+alimKf [Re(1-cosωτ)- Imsinωτ]}+ j{alimKf

[Resinωτ+ Im(1-cosωτ)]}=0. For stability, both real and imaginary
parts of the equation must be zero. If the imaginary part is equaled to
zero first, Resinωτ+ Im(1-cosωτ)=0, the ratio of real and imaginary
parts gives the phase angle (ψ) of the root on Nyquist diagram,

tanψ =
Im ωð Þ
Re ωð Þ =

sinωτ
cosωτ� 1

ð20Þ

This value is the phase delay of the frequency transfer function of
the system. If the half-angle formula in trigonometry is applied [1],

ωτ = 3π + 2ψ ð21Þ

image of Fig.�3


Table 1
Data of cutting and modal analysis parameters.

Cutting data Modal analysis data

N (rpm) 1000 C (N/m2) 1.67×109

s (mm/rev) 0.12 k (N/m) 1×106

a (mm) 1.2 ωn (Hz) 773
β (°) 70 ξ (%) 2

Fig. 4. Transfer function of a SDOF system represented by its (a) real and (b) imaginary
parts.
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The phase effect in regenerative chatter vibration can be written as
follows,

n +
ε
2π

=
f
Ω

= f τ ð22Þ

Where, f is frequency of the cutting tool (Hz); Ω is the spindle
speed (1/s); ε/2π the fractional number of waves formed on the
surface. It can be seen here that there is a phase shift between the
inner and outer waves ε=3π+2ψ. The corresponding spindle period
and maximum spindle speed are found as,

τ =
2nπ + ε

2πf
→ N =

60
τ

n = 0;1;2;3;::: ð23Þ

The critical axial depth of cut can be found by writing the reel part
of the characteristic equation to zero. Hence,

alim =
�1

Kf Re 1� cos ωτð Þ � Im= Reð Þsin ωτ½ � →
Im ωð Þ
Re ωð Þ =

sin ωτ
cos ωτ� 1

alim =
�1

2Kf Re ωð Þ
ð24Þ

is calculated.

3.2. According to τ-decomposition form

According to τ-decomposition form, the characteristic equation of
the system is Eq. (15). The roots of this equation are obtained from the
solution of Eq. (17). Each positive real root (ωi(jω)) is substituted back
into the right side of Eq. (16) to findU2(jωi). The phase angle of the
resulting number is computed as follows;

ψi = tan�1 Im U2 jωið Þð Þ
Re U2 jωið Þð Þ ð25Þ

Again, according to Eq. (22), the value of time delay is found,

τi =
ψi + 2πn

ωi
n = 0;1;2;3;::::: ð26Þ

Depending on this, maximum spindle speed to be gained in stable
cutting is found as in Eq. (23). If critical axial depth of cut required for
the borders of stable cutting is organized and as seen in Eq. (11) in
Fig. 3 and according to Nyquist criterion, can be found in relation to
point (−1,0j) of the unit circle.

aKf G sð Þ 1� e�τ s� �
= �1;0jð Þ ð27Þ

If the equation is reorganized in a form of s= jω, it can be
calculated by the following expression

aKf G ωð Þ 1� e�jωτ
� �

= � 1 ð28Þ

Thus, the borders of stable cutting corresponding to spindle speeds
given in Eq. (28), are calculated with the expression

alim =
1

Kf G 1� e�jε
� � ð29Þ
Since Kf, is a real value, the real value of G(1−e− jε) is included in
the process and the equation becomes as follows,

alim =
1

2Kf Re G jωð Þð Þ ð30Þ

4. A comparison of numerical calculation and test results

In the current study, AISI-1040 steel has been used as a workpiece
material whose diameter is 64.9 mm. The workpiece is cut by
Kennametal (SDJR-2525M11 NA3) inserts on universal lathe TOS
SN50C. Tool holder dimensions are (b×h×l)=(25×25×110)mm.
Data required for calculation, cutting and dynamic parameters
determined as a result of model analysis performed by an impact
hammer are given in Table 1. Dynamic parameters were determined
by using a modal test, CutPro®MalTF software and CutPro®Modal
software. The other samples and results related with this subject have
been given by Dohner et al. [20].

image of Fig.�4
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In this study, a system of orthogonal cutting was dealt with as a
SDOF. Analyticalmodelingof this systemand investigationof its stability
were conducted in two different forms. Themovement of the tool in (x)
direction for SDOF systemwas neglected because the natural frequency
of the tool in this direction was very low in relation to the other
direction. For this reason, it was accepted that the movement in this
direction had no effect on the stability limit of orthogonal cutting. Some
simplifications were made in order to obtain a useful system model.
These were observed to be effective on the results. According to OTF
form, which was dealt with first in the study, curves of real and
imaginary parts of the transfer function of SDOF system are given in
Fig. 4. Thus, the frequency corresponding to theminimum negative real
part of the transfer function can be predicted as chatter frequency [2].
This value, according to the form calculated here, was predicted to be
789 Hz. Prediction chatter frequency in both calculation forms are
explained in this study, as expected [1,2], is greater than the natural
frequency thatwas found as a result of themodal analysis of the system.

Later, equations of motion of the system were organized in
τ-decomposition form. For this reason, equations were expressed in
termsof relative displacementon theworkpiece of the tool (l) instead of
time. Stability of the system was predicted according to Nyquist
criterion. By Eq. (16), critical orbital curve (unit circle) was plotted
as s= j·ωi , U1(s)=esdπ and Nyquist place curve was plotted
as U2 sð Þ = �1

a2d s2 + a1d s + a0
as it can be seen in Fig. 5(a). Subscript

(i=1, 2) is the number of positive real root of characteristic equation
of the system (Eq. (17)).

The plot of this curve has been dawn by increasing and decreasing
the real roots of characteristic equation of the system (17) in a way that
theywould enter or leave into theunit circle. The system is stable only in
intervals where the value of this root is zero. In order to screen the
Fig. 5. Plot of (a) U1, unit circle and roots in the complex plane (b) magnitude of (U2).
frequency intervals in simulation, the roots were increased in such a
way that theywould be around of the natural frequency. Thus,while the
curveU2( jωi)enters into theunit circleU1( jω)for an increase of one root,
the other would leave. The value of frequency at the points where the
curve U2( jωi) intersects the unit circle U1( jω)is the value of natural
frequency(ωn). These points are in the regions 3rd and 4th of the unit
circle, respectively. This situation can be observed from magnitude
graphics |U2( jωi)| in Fig. 5(b) plotted for the increase of both root values.
Again the frequency value at the point where the two graphics coincide
corresponds to the natural frequency of the system. This situation is
natural. Because at this point of coincidence, as it can be seen from
Eq. (16), the term is |U1( jω)|=|U2( jωi)|=1. Lines and dashed lines in
Fig. 5(b) and in all graphics plotted with this method represent the
increases related with the curve U2( jωi) for each root value coinciding
with the circles U2 and U1 in the 3 and 4 complex planes respectively.
Real and imaginary graphics of the expressionU2( jω) are given in Fig. 6.
The prediction of chatter in thismethodwasmade according to Nyquist
criteria [2]. Since the term C in Eq. (29) was chosen to be real and alim
was found tobe real, the termG(1-e− jε)should alsoprovidea real value.
So the equation in Fig. 5(a) should be |U2( jωi)|=|U2( jωi)e- jε|. Thus,
(U2( jωi)-U2( jωi)e- jε) becomes parallel to real axis and the expression
U2( jωi)-U2( jωi)e- jε=2·Re(U2( jωi)) is obtained. According to all said,
frequency value corresponding to the point equal to the root value on
Nyquist diagram for each imaginary value of the curve U2( jωi) can be
taken as the value of chatter frequency (see Fig. 6(b)). According to this
calculation, the value was predicted as 779.5 Hz.
Fig. 6. Plot of U2, (a) real part and (b) imaginary parts.
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Fig. 7. Plot of SLDs respect to (a) OTF Form and (b) τ-decomposition form.
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SLDs, which were plotted depending on the depth of cut and
spindle speed according to both forms dealt with in the current study,
are given in Fig. 7. As it can be seen in Fig. 7, due to some calculus
differences between the two forms, stable depth of cut presents
differences at high cutting speeds. This difference between the
borders of stable depth of cut gradually narrows at cutting speeds
that are appropriate for working in general. This situation is shown in
Fig. 8. Besides, for spindle speed of N=1000 rpm, stable depths of cut,
Fig. 8. Plot of SLDs at about 1000 rpm respect to (a) OTF Form and (b) τ-decomposition
form.
according to OTF and τ-decomposition forms, were determined as
7.6×10−5 m and 7.3×10−5 , respectively.

After attaching an accelerometer with a sensitivity of 10.43 mV/g
on the surface of the tool holder in the feed direction, modal analysis
test of SDOF was conducted by applying small impacts by impact
hammer at appropriate point again in the same direction. Time
response of the accelerator was measured and transformed into data
frequency domain. For this transformation of time data, Fast Fourier
Transform (FFT) was utilised. At all steps of modal analysis, a portable
computer was used for collecting data, calculating modal parameters
and presenting the results. All data were collected by using
CutPro®MalTF software, and modal analysis was performed by using
CutPro®MalTF software [1]. Real imaginary graphics of the transfer
function of the system obtained from the current study are given in
Fig. 9 and modal parameter values are given in Table 1.

Cutting test for SDOF system was performed under the conditions
given in Table 1 and not using cooling fluid. Data of cutting test were
processed by LabVIEV 7 software that is loaded into the same
computer. Noise produced during this process was recorded by a
microphone attached to power supply. Noise data recorded was
recorded to time domain via LabVIEV 7 software as seen in Fig. 10.
Then this noise recording was transformed into frequency domain by
the software and spectrum graphic was formed. The frequency
corresponding to the highest amplitude in the spectrum graphic can
be determined as current chatter frequency of the tool performing the
process of cutting under these valid conditions. The chatter frequency
determined here is 763 Hz.
Fig. 9. Real and imaginary graphics obtained by modal analysis of the SDOF system.
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Fig. 10. Graphics of power spectrum for the SDOF system.
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5. Conclusions

The present study focused on a turning system with SDOF in
orthogonal cutting process. Prediction of the chatter frequency of the
system and the investigation of its stability were conducted in two
separate forms; onewas in the formOTF and the otherwas in the form
of applying τ-decomposition form to the Nyquist criterion. Results
obtained from both forms were compared with the modal analysis
conducted and the results of cutting test. Prediction chatter frequency
in both calculation forms explained in this study is greater than the
natural frequency that was found as a result of the modal analysis of
the system. But according to the result of this cutting test, it was found
that the value of this frequency is, in fact, under the natural frequency
of the system. The fact that both of the calculation forms have
analytical and linear structure may be a factor that affects these
results. Besides, in predicting chatter frequency, the clamping
situation of the tool holder is fairly important. During various modal
analysis made, it was observed that a second mode appeared in real
and imaginary graphics when the attachment of the tool holder was
not rigid enough. Another factor affecting these results is that the
damping in process and cutting process were not taken into account.
The stability of the system is affected by dynamic factors such as nose
radius of the tool holder, sharpness or bluntness and built-up edge.
Although it's written in literature how these factors affect the stability
of the system, there is no complicated modeling that takes into
consideration all of dynamic factors yet. Although all these effects
were considered in this study, a deviation of 3.3% in OTF form and
2.12% deviation in τ-decomposition form were observed in chatter
frequency prediction comparedwith current chatter frequency. Under
current working conditions, according to both forms of calculus, the
results in the prediction of the stability of the system were quite
similar. However, it was observed that this difference is larger in high
cutting speeds.
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