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The Lorenz chaotic system is based on a nonlinear behavior and this causes the system to be unstable. Therefore, two different
controller models were developed and named as the adaptive pole placement and sliding mode control (SMC) methods for the
establishment of continuous time nonlinear Lorenz chaotic system. In order to achieve this, an improved controller structure was
developed first theoretically for both the controller methods and then tested practically using the numerical samples. During the
establishment of adaptive pole placementmethod for the Lorenz chaotic system, various stages were applied.The nonlinear chaotic
system was also linearized by means of Taylor Series expansion processes. In addition, the feedback matrix of the adaptive pole
placement method was determined using linear Jacobian matrix. The chaotic system reached an equilibrium point by using both
the SMC and adaptive pole placement methods; however the simulation results of the SMC had better success than adaptive pole
placement control technique.

1. Introduction

Several studies have been conducted to analyze and control
the chaotic structure since it has been found [1–4]. These
studies are mainly focused on obtaining different chaotic
structures, development process in the fields of applications
on chaotic structures, and controlling the chaos with different
procedures [5].

Lorenz, Chua, Rössler, Rikitake, Rucklidge, Chen, Lü,
and Genesio developed the most important chaotic systems.
These systems were applied to many control methods, such
as OGY [6], nonlinear feedback control [7], delay feedback
control [8], sliding mode control [9], switching control [10],
fuzzy sliding mode control [11], and adaptive backstepping
control [12].

Chaos is illustrated by nonlinear behaviors; therefore
SMC technique can be used to control of the chaotic systems.
SMC technique has been used by many different system con-
trols, such as robotic, mechatronic, machine driver, chemical
processes, wind turbine systems, and DC/DC converter [13].

The structure of the SMC must be known in order to
understand the applications of the SMC technology. SMC
has two different stages known as reaching and sliding
phase. Firstly, a proper slip surface is the choice for the
sliding mode technique. Switching technique forms the basic
structure of SMC. In contrast to the switching ratio ideal,
SMC is limited by physical reasons. The most important
problem in these systems is chattering which is caused by
fast switching. Switching functions such as relay, sigmoid,
saturation, hysteresis-saturation, and hyperbolic functions
could be used to reduce the chattering level [13, 14].

Abundant literature is available regarding the lineariza-
tion considered as an important method for controlling
of nonlinear systems. One of the most important studies
about time-invariant systems linearization was conducted
by Khalil [15]. Another study also addressed the problem
of approximate linearization of a nonlinear control system
[16].

The adaptive pole placement-based controller tech-
nique is another important method used in this work. A
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zero equilibrium point was selected for APPM. The sys-
tem which is nonlinear is linearized around this point,
and required feedback vector is obtained from Taylor’s
series.

The applications of the pole placement-based con-
troller techniques were examined in literature. Some of
important applications related to this topic are as follows.
Chilali and Gahinet have presented a novel LMI char-
acterization for general convex subregions of the com-
plex plane and proved its practicality for H∞ synthesis
with closed-loop pole clustering constraints [17]. Another
study presented a PPM using both the improved Jacobian
and the corresponding system transfer function matrices
[18].

On the other hand, the control of chaotic systems with
nonlinear behavior has become an important engineering
problem recently. At the same time, chaotic systems have
been widely used to explain the events and systems involving
nonlinear behaviors such as Lorenz’s description of weather
events. In addition, chaotic systems provide a very important
infrastructure for encrypting and sending electronic data
that are widely used in communication systems. The aim of
this study is to present a different approach to control the
chaotic system of Lorenz, which is one of the basic studies for
chaotic systems. The performances of two different control
methods to accomplish this aim have been compared. The
results of such comparisons would be a good example of the
application of new control techniques on chaotic systems. It
will also give a different approach to the chaotic structures
used industrially.

This paper has been organized as follows. First, a
brief definition of a Lorenz chaos system is given in
Section 2. Then, design of sliding mode controller is given
in Section 3. Afterward, numerical simulations for chaos
control by way of sliding mode control and adaptive pole
placement methods are given. Finally, conclusion is given in
Section 5.

2. The Modeling of the Lorenz Chaotic System

The Lorenz system with a nonlinear structure is described
by (1) given below. While positive constant parameters are a,
b, and c, state variables are x, y, and z. The typical literature
parameter values of the a, b, and c constants are a=10, b=8/3,
and c=28, respectively.

̇𝑥 = 𝑎. (−𝑥 + 𝑦)
̇𝑦 = (𝑐 − 𝑧) .𝑥 − 𝑦
𝑧̇ = 𝑥.𝑦 − 𝑏.𝑧

(1)

TheLorenz chaotic systemof the xy, xz, yz, and xyz phase por-
traits were obtained by using a MATLAB/Simulink program
as indicated in Figure 1, when 𝑥0 = 0.001, 𝑦0 = 0.001, and𝑧0 = 0. The initial values of the chaotic system were selected
as values close or similar to the values in the literature. The
choice of initial values is very important because of the change
in all dynamic behavior.

3. SMC Design for Lorenz Chaotic System

SMCmay be practiced for the Lorenz chaotic system. Stability
of the Lorenz systemwas improved using only one controller.
The system can be presented with

𝑥̇ = 𝑎. (𝑦 − 𝑥)
̇𝑦 = 𝑥. (𝑐 − 𝑧) − 𝑦 + 𝑢
𝑧̇ = 𝑥.𝑦 − 𝑏.𝑧

(2)

where 𝑢 is the control input.
After choosing of a sliding surface like (3), equations

indicated below might be established:

𝑠 = ̇𝑒 + 𝜆.𝑒 (3)

̇𝑠 = ̈𝑒 + 𝜆. ̇𝑒 (4)

The trajectory error state could be selected like 𝑒 = 𝑦𝑟 − 𝑦,
where 𝑦𝑟 is constant, so ̇𝑦𝑟 = ̈𝑦𝑟 = 0. ̇𝑦𝑟 and ̈𝑦𝑟 are obtained
as ̇𝑒 = 𝑦̇𝑟 − 𝑦̇ = 0 − ̇𝑦 = − ̇𝑦 and ̈𝑒 = 𝑦̈𝑟 − 𝑦̈ = 0 − ̈𝑦 = − ̈𝑦.

̇𝑠 = −𝜌. sign (𝑠) (5)

After a proportional reachability rule as (5) is selected,
equations below may be inscribed.

̇𝑠 = ̈𝑒 + 𝜆. ̇𝑒 = 𝑦̈𝑟 − 𝑦̈ + 𝜆. ( ̇𝑦𝑟 − ̇𝑦)
= −𝜌. sign (𝑠)

− ̈𝑦 − 𝜆.𝑦̇ = −𝜌. sign (𝑠)
̇𝑦𝑛𝑒𝑤 = 𝑦̇ + 𝑢

− ̈𝑦 − 𝜆. ̇𝑦 − 𝜆.𝑢 = −𝜌. sign (𝑠)

(6)

The control input is provided like

𝑢 = − ̈𝑦𝜆 − 𝑦̇ +
𝜌. sign (𝑠)
𝜆 (7)

The stability analysis is significant for evaluating the design of
nonlinear controller. Therefore, Lyapunov stability analysis is
selected and applied to SMC stability analysis. The stability is
guaranteed, after the derivation of the Lyapunov function is
negative definite [17].

V̇ (𝑡) = 𝑠. ̇𝑠 ≤ 0, 𝑠 (𝑡) ̸= 0
𝑠. ̇𝑠 = 𝑠. (−𝜌. sign (𝑠)) ≤ |𝑠| . (−𝜌. sign (𝑠)) < 0

(8)

According to the Lyapunov 2nd method, 𝑛 to be constant, if
lim𝑡󳨀→∞𝑦(𝑡) = 𝑛 is provided, then the systems is considered
to be stable [19].

4. Adaptive Pole Placement
Method Definitions

In the modern control theory and design, pole placement
control techniques have been widely used. Firstly, the non-
linear Lorenz chaotic system is linearized by means of using
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Figure 1: Phase portrait of the Lorenz systems in (a) xy, (b) xz, (c) yz, and (d) xyz.

Jacobian matrix, and then the feedback vector K[k1 k2 k3]
is determined by using embedded programming including
linearmatrix.The feedback linearized systemmay be defined:

u (t) = −Kx (t) (9)

Modifying the system equation too:

ẋ (t) = (A − BK) x (t) + B𝑟 (𝑡) (10)

The desired eigenvalues are to be at

|sI − A + BK| = (𝑠 − 𝛾1) (𝑠 − 𝛾2) . . . (𝑠 − 𝛾𝑛) (11)

5. Numerical Simulation

The control input signal is obtained by using (9), where ̈𝑦 =
−1, 𝑦̇ = 28𝑥−𝑥.𝑧+𝑦, and SMCgains have been selected as𝜆 =
3, 𝜌 = 0.01 with the initial conditions 𝑥0 = 0.001, 𝑦0 = 0.001,
and 𝑧0 = 0.The controllers are activated at t= 40 seconds in all
simulations. The system was linearized by means of Taylor’s

series and then the Jacobian matrix was obtained by using
the first terms of linear elements. A function is expressed in
a great ratio by the first terms of the expansion. Therefore,
higher degree terms can be ignored.

𝑢 = − 1𝜆 − 28𝑥 + 𝑥𝑧 + 𝑦 +
𝜌. sign (𝑠)
𝜆

𝑢 = −13 − 28𝑥 + 𝑥𝑧 + 𝑦 +
0.01. sign (𝑠)
3

(12)

𝑓1 = 𝑥̇ = 𝑎. (𝑦 − 𝑥)
𝑓2 = 𝑦̇ = 𝑥. (𝑐 − 𝑧) − 𝑦
𝑓3 = 𝑧̇ = 𝑥.𝑦 − 𝑏.𝑧

(13)

𝑓 (𝑥) = 𝑓 (𝑥)

= 𝑑𝑓𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥 (𝑥 − 𝑥) +Higher degree terms

(14)
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Figure 2: The SMC model for the Lorenz chaotic system.
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Figure 3: The phase planes e(t) and ė(t) in the Lorenz chaotic
system.

The eigenvalues are calculated by means of solving the
characteristic equation:

A = |𝜆I − J| =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆 − (−10) −10 0
𝑧 − 28 1 + 𝜆 𝑥
−𝑦 −𝑥 𝜆 + (83)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0 (15)

Initial eigenvalues of 𝜆1 = 22.8277, 𝜆2 = −11.8277, 𝜆3 =2.6667 for 𝑥0 = 0.001, 𝑦0 = 0.001, and 𝑧0 = 0.
A suggested control model based on the equivalent

control 𝑢𝑒𝑞(𝑡) and switching control 𝑢𝑠𝑤(𝑡) is indicated in
Figure 2 and (16), (17), and (18), where 𝜌𝑠𝑤 is a positive
constant.

𝑢 (𝑡) = 𝑢𝑒𝑞 (𝑡) + 𝑢𝑠𝑤 (𝑡) (16)

𝑢𝑠𝑤 (𝑡) = −𝜌𝑠𝑤sign (s (𝑡)) (17)

𝑢𝑒𝑞 (𝑡) = 𝑢 (𝑡) − 𝑢𝑠𝑤 (𝑡) (18)

In Figure 3, the phase system controlling sliding mode
reached the third region from second region at fourth second.
Then, the error of system reached the equilibrium point (zero
point) after sliding phase.
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Figure 5: The time variation of the sliding surface.

High frequency control signal was applied to input of
chaos system as shown in Figures 4, 5, and 6.

After the controller enters the system at 40th second as
shown in Figure 7, the state variables reached an equilibrium
point 𝐸0(0, 0, 0). This phenomenon is clearer in Figure 8 of
the phase portrait.
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Figure 7:The time response of (a) x, (b) y, and (c) z state variables with the SMC activated at t = 40 seconds.
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In Figure 9, the eigenvalues of 𝐸0(0, 0, 0) are 22.83, 2.667,
and -11.83, which are given respectively. The same values can
also be reached at the equilibrium point due to the existence
of the controller at 40th second. According to Lyapunov
stability theorem, the criterion of 𝑠. ̇𝑠 ≤ 0 was applied at
fourth second and the system reached the stability. Initial
eigenvalues of 𝛾1 = 22.8277, 𝛾2 = −11.8277, and 𝛾3 = 2.6667
were chosen for the adaptive pole placement system design.
Using (14) adaptive pole placement method was improved as
shown in Figure 10.

In Figure 11, the state variables reached the equilibrium
point 𝐸0(0, 0, 0) quickly with an error. These conditions were
also confirmed in both Figures 12 and 13 with attained eigen-
values, 22.81, 2.667, and -11.81, respectively. Also, k1, k2, and
k3 are adaptive controller gains as shown in Figure 14. While
the k2 feedback vector was fixed, the feedback vectors k1
and k3 varied intensively with the existence of the controller
especially at 40th second.

6. Conclusion

In this study, the controllers were developed by way of
the SMC and APP methods for continuous time nonlinear
Lorenz chaotic system. The simulation results of the SMC
technique are more influential than APP technique. While
the SMCmethod reached an equilibrium point, adaptive pole
placement method reached an equilibrium point with greater
error. According to SMC, the signal responses given byAPPM
are quite noisy and the steady-state errors have quite high
values. Moreover, the results of the study showed that the
system behaviors based on Lyapunov stability analysis were
unstable and nonlinear at 0th to 40th second. The SMC,
which iswidely preferred in the literature, has performed very
well in the control of the Lorenz chaotic system. Another
recommended control method is APPM.This method can be
used to control the Lorenz chaotic systembut has a lower level
of performance.
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[5] J. Lü, G. Chen, and S. Zhang, “The compound structureof a new
chaotic attractor,” Chaos, Solitons & Fractals, vol. 14, no. 5, pp.
669–672, 2002.

[6] E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Physical
Review Letters, vol. 64, no. 11, pp. 1196–1199, 1990.

[7] J. Alvarez-Ramı́rez, “Nonlinear feedback for controlling the
Lorenz equation,” Physical Review E: Statistical, Nonlinear, and
Soft Matter Physics, vol. 50, no. 3, pp. 2339–2342, 1994.

[8] Y. Ding, W. Jiang, and H. Wang, “Delayed feedback control
and bifurcation analysis of Rossler chaotic system,” Nonlinear
Dynamics, vol. 61, no. 4, pp. 707–715, 2010.
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