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THE RELATIVELY OSCULATING DEVELOPABLE SURFACES
OF A SURFACE ALONG A DIRECTION CURVE

RASHAD A. ABDEL-BAKY AND YASIN ÜNLÜTÜRK

Abstract. We construct a developable surface tangent to a surface along a
curve on the surface. We call this surface as relatively osculating developable
surface. We choose the curve as the tangent normal direction curve on which
the new surface is formed in the Euclidean 3-space. We obtain some results
about the existence and uniqueness, and the singularities of relatively osculat-
ing developable surfaces. We also give two invariants of curves on a surface
which determine these singularities. We present two results for special curves
such as asymptotic line and line of curvature which are rulings of the relatively
osculating surface.

1. Introduction

One-parameter family of straight lines forms a surface called ruled surface in
Euclidean space. It has been an interesting subject that is studied from the end
of the 19th century until today. Applications of ruled surfaces have been exten-
sively performed to computer-aided geometric design (CAGD), design of surfaces,
technology of manufacture, simulation and rigid bodies [10],[11],[14].
Developable surfaces as a special kind of ruled surfaces are generally character-

ized by Gaussian curvature, that is, if Gaussian curvature of ruled surfaces becomes
vanishing, ruled surfaces can be mapped onto the plane surfaces without distortion
of curves: any curve from such a surface drawn onto the flat plane remains the
same. Although all developable surfaces are ruled ones, but all ruled surfaces are
not developable [11], [17]. Developable surfaces as a kind of ruled surfaces are clas-
sified into cylinders, cones or tangent surfaces of space curves [1], [3], [13], [14],
[18].
As well known, the inner metric of a surface determines the Gaussian curvature,

therefore all the lengths and angles on the surface remain invariant under bend-
ing. This feature is what makes developable surfaces important in manufacturing.
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Hence both ruled surfaces and developable surfaces have been paid attention in
engineering, architecture, and design, etc. [15], [16].
Based upon a curve in a surface in Euclidean 3-space, a surface has been con-

structed to be a developable surface tangent to the surface along the curve. This
geometric object has been said to be an osculating developable surface along the
curve [8]. It has been known that an osculating developable surface is a ruled sur-
face whose rulings are directed by the osculating Darboux vector field along the
curve [8].
Singularities of ruled surfaces were studied in the Euclidean 3-space R3 by Izu-

miya and Takeuchi [4]. Izumiya and Takeuchi, in their survey of ruled surfaces [5],
presented original results about curves in ruled surfaces in the Euclidean 3-space.
They studied curves on ruled surfaces by choosing curves as cylindirical helices and
Bertrand curves [6]. In their another paper [7], the notions of helices generalized
to slant helices and conical geodesic curves were defined in R3. Also the tangential
Darboux developable of a space curve was constructed and its singularities were
examined. Interesting results about a geometric invariant of space curve which
is closely regarded to singularities of the tangential Darboux developable of the
original curve given by Izumiya et al. [7].
The motivation of this study is based on the works of Izumiya and Otani [8],

and Hananoi and Izumiya [9]. In [8], the authors constructed osculating developable
surface along the curve in the surface by taking a developable surface tangent to
a surface forward a curve in the surface into consideration. Then they gave some
results such as the uniqueness and the singularities of such a surface.
In [9], Hananoi and Izumiya studied a developable surface which remains normal

to a surface along a curve on ruled surface. They had results such as the uniqueness
and the singularities of relatively osculating developable surfaces. Recently, Mark-
ina and Raffaelli examined the same topic in Rm+1. Taking a smooth curve γ in
an m−dimensional surface M in Rm+1, they gave some results about the existence
and uniqueness of a flat surface H having the same field of normal vectors as M
along γ [12].
The paper is organized as follows: the next two sections present some preliminar-

ies, and introductory relevant notation and terminology. In Sec. 3, new developable
surfaces which remain tangent to the base surface are constructed along a tangent
normal direction curve and some results such as invariants of Mo characterizing
contour generators of M are given. The existence and uniqueness of the surface
have been presented for these surfaces. We give two results for special curves such
as asymptotic line and line of curvature which are rulings of the relatively osculat-
ing surface. Finally, illustrative examples have been given for the base surface and
its osculating developable surface.
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2. Preliminaries

Some notions, formulas and conclusions for space curves, and ruled surfaces in
Euclidean 3-space R3 are presented in this section, so these basic information are
available in the textbooks on differential geometry (See for instance Refs. [5], [7],
[14]).
Let M be a regular surface in R3 and let α : I ⊆ R→M be a unit speed curve.

At each point on α = α(s), consider the following three vectors: the unit normal
vector e3(s) to the surface, the unit tangent vector e1= e1(s) to the curve and the
tangent normal vector e2= e3×e1. The vector e2 is tangent to the surface M ,
but normal to the curve α = α(s). Then we have an orthonormal frame {e1(s),
e2(s), e3(s)} along α, which is called the Darboux frame along α = α(s). Darboux
equations for this frame are given by: e′1

e
′

2

e
′

3

 =

 0 κg κn
−κg 0 τg
−κn −τg 0

 e1
e2
e3

 ,
or equivaently

e′1= Ωn×e1, e′2= Ωo×e2, e′1= Ωr×e3, (1)

where

Ωn = −κne2 + κge3, Ωr = τge1 + κge3, Ωo = τge1 − κne2, (2)

are said to be the normal, the rectifying, and the osculating Darboux vector fields
along α = α(s), respectively [5]. The functions κg(s), κn(s), τg(s) are entitled as
geodesic curvature, normal curvature, and geodesic torsion of α = α(s), respec-
tively [13]. In terms of these quantities, the geodesics, asymptotic lines, and line of
curvatures on a smooth surface can be determined, as loci along which κg(s) = 0,
κn = 0, and τg(s) = 0, respectively. The definitions of the spherical images of each
Darboux vector fields are as follows:

en(s) =
Ωn

‖ Ωn‖
=
−κne2 + κge3√

κ2g + κ2n

, if (κn,κg) 6= (0, 0),

er(s) =
Ωr

‖ Ωr‖
=
τge1 + κge3√

τ2g + k2g

, if (τg,κg) 6= (0, 0),

eo(s) =
Ωo

‖ Ωo‖
=
τge1 − κne2√

τ2g + k2n

, if (τg,κn) 6= (0, 0).


(3)

On the other hand, it is known that

κ(s) =
√
κ2g + κ2n, and τg(s) =

κnκ
′
g − κgκ′n
κ2n + κ2g

+ τ(s), (4)
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where κ(s), and τ(s) are the curvature and the torsion of α = α(s) as a space
curve, respectively [13]. From now on, we shall often not write the parameter s
explicitly in our formulae.

2.1. Ruled and developable surfaces. A ruled surface in Euclidean 3-space
R3 is a differentiable one-parameter set of straight lines. Such a surface has a
parameterization of the form

P(s, v) = α(s) + ve(s), v ∈ R, (5)

where α(s) is the base curve and e(s) is the unit vector giving the direction of the
straight lines of the surface. The unit normal vector of the ruled surface P(s, v) at
each point is defined by

n(s, v) =
Ps ×Pv

‖Ps ×Pv‖
=

α′ × e + ve′ × e

‖α′ × e + ve′ × e‖ . (6)

The base curve is not unique, since any curve of the form:

C(s) = α(s)− η(s)e(s) (7)

may be used as its base curve, η(s) is a smooth function. If there is a common
perpendicular vector to two neighboring rulings on P(s, v), then the foot of the
common perpendicular on the main ruling is said to be a central point. The locus
of the central points is said to be the striction curve. In Eq. (7) if

η(s) =
〈α′(s), e′〉
‖e′‖2

, (8)

then C(s) is named as the striction curve on the ruled surface and it is unique. In
the case η = 0, the base curve is the striction curve. The distribution parameter of
P(s, v) is defined by

λ(s) =
det(α′, e, e′)

‖e′‖2
. (9)

The parameter of distribution is a real integral invariant of a ruled surface and
allows further classification of the ruled surface.
Developable surfaces are briefly introduced as special types of ruled surfaces. If

the ruled surface P(s, v) is a developable one, then we have

λ(s) = 0⇔ det(α′, e, e′) = 0. (10)

Thus a volume formed by α′, e and e′ is vanishing, i.e, they are linearly dependent.
This condition is satisfied provided that there are three non-identically vanishing
functions η(s), ξ(s) and γ(s) satisfying

µ(s)α′ + β(s)e + γ(s)e′ = 0. (11)

We has to analyze the following cases:
Case 1: µ = 0
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Since 〈e, e′〉 = 0, it follows immediately that Eq. (11) is only satisfied when e is
a constant vector, i.e., P(s, v) is a part of a cylinder.
Case 2: µ 6= 0 from Eq. (11) it follows:

α′ = ζ(s)e + υ(s)e′, (12)

where

ζ(s) = −β
µ
, υ(s) = −γ

µ
.

Differentiating Eq. (7) and using Eq. (12), we get

C′(s) = (ζ(s)− η′(s)) e(s) + (υ(s)− η(s)) e′. (13)

The situation for C to be striction curve becomes equivalent to that the vectors
C′ and e′ are perpendicular to each other. Therefore, we conclude that the ruling
becomes parallel to the first differentiation of the striction curve which is also the
tangent of the striction curve, i.e.

C′ = (ζ(s)− η′(s))e(s). (14)

Thus we have to consider the following sub-case: ζ(s) = η′(s). In this case Eq. (14)
yields to that C = C0 is a constant vector. So, P(s, v) becomes a part of a cone as
follows:

P(s, v) = C0 + (η(s) + v)e(s), v ∈ R. (15)

We now define the concept "contour generators". LetM be an orientable surface
and n a unit normal vector field on M . For a unit vector x in the unit sphere
S2 =

{
x ∈R3 | ‖x‖ = 1

}
, the normal contour generator of the orthogonal projection

with the direction x is defined to be

{p ∈M |< n,x >= 0}. (16)

Moreover, for a fixed point c ∈ R3, the normal contour generator of the central
projection with the center c is defined to be

{p ∈M |< n,p− c >= 0}. (17)

3. The relatively osculating developable surfaces

In this section, we present a relatively osculating developable surface along the
e2(s)-direction curve

β(s) =
s∫
0

e2(s)ds

as follows:
Mo : P̃(s, v) = β(s) + veo(s), (18)

where v ∈ R, and
eo(s) =

τge1 − κne2√
τ2g + k2n
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under the assumption (τg,κn) 6= (0, 0). Firstly differentiating eo, we find

e′o =

(
κg +

κnτ
′
g − τgκ′n
τ2g + κ2n

)κne1 + τge2√
τ2g + κ2g

 , (19)

and thus λ(s) = 0. This results that Mo is a developable surface. Furthermore, we
propose two invariants δo(s), and σo(s) of Mo as follows:

δo = κg +
κnτ

′
g − τgκ′n
τ2g + κ2n

, and σo = −

 κn√
τ2g + κ2n

+

 τg

δo
√
τ2g + κ2g

′ , (20)

where δo 6= 0. We can also calculate that

P̃s × P̃v = −

vδo +
τg√

τ2g + κ2n

 e3. (21)

Hence, the normal vector of Mo is in the same direction to the normal vector of M .
This is the reason why we name Mo the relatively osculating developable surface
of M along β(s).
On the other hand, the invariants δo(s), and σo(s) of Mo describe contour gen-

erators of M as follows:

Theorem 1. Let Mo be the relatively osculating developable surface of M ex-
pressed by Eq. (18). Then we have the following:
(A) The following are equivalent:
(1) Mo is a cylinder,
(2) δo(s) = 0,
(3) β = β(s) is a contour generator with respect to an orthogonal projection.

(B) If δo(s) 6= 0, then the following are equivalent:
(1) Mo is a cone,
(2) σo(s) = 0,
(3) β = β(s) is a contour generator with respect to a central projection.
Proof. (A) From Eq. (18), it is obvious thatMo is a cylinder if and only if eo(s)

is constant, i.e. δo(s) = 0. Therefore, the condition (1) becomes equivalent to the
situation (2). Suppose that the condition (3) holds. Then there exists a fixed vector
x ∈S2 such that 〈e3, x〉 = 0. So there are a, b ∈ R such that x =ae1 + be2. Since
〈e′3,x〉 = 0, we have −aκn − bτg = 0, so that we have x = ±eo(s). Namely, the
situation (1) holds. Suppose that eo(s) is constant. Then we choose x = eo(s) ∈ S2.
By the definition of eo(s), we have 〈x, e3〉 = 0. Hence the condition (1) entails the
situation (3).



THE RELATIVELY OSCULATING DEVELOPABLE SURFACES 517

(B) The situation (1) determines that the singular value set of Mn is a constant
vector. Thus, in view of Eqs. (8), (9), and from Eq. (19), we have

C′(s) = −

 κn√
τ2g + κ2n

+

 τg

δo
√
τ2g + κ2g

′ eo(s) = −σo(s)eo(s).

Then Mo is a cone if and only if σo(s) = 0. It follows that the situations (1) and
(2) are equivalent. By the definition of the the central projection means that there
is a fixed point c ∈ R3 such that 〈e3,β − c〉 = 0. If the condition (1) holds, then
C(s) is constant. For the constant point c = C(s), we have

〈e3,β − c〉 = 〈e3,β −C〉 =

〈
e3,

〈
β′, e′o

〉
‖e′o‖

2 eo

〉
= 〈e3, eo〉 = 0. (22)

This implies that (3) holds. On the contrary, by (3), there is a fixed point c ∈ R3
such that 〈e3 ,β − c〉 = 0. Differentiating both side of Eq. (22), we have

0 = 〈e3,β − c〉′ = 〈−κne1 − τge2 ,β − c〉 , (23)

so we may write β − c =f(s)eo(s), where f(s) is a differentiable function. Differ-
entiating Eq. (23) again, we have:

0 = 〈e3,β − c〉′′ = 〈−κne1 − τge2, e2〉+
〈
− (κne1 + τge2)

′
,β − c

〉
,

or equivaently,

0 = 〈e3,β − c〉′′ = −τg + fδo
√
τ2g + κ2n.

It follows that

c = β(s)− τg

δo
√
τ2g + κ2n

eo(s) = β −
〈
β′, e′o

〉
‖ e′o‖

2 eo(s) = C(s).

Therefore, C(s) is constant, so that (1) holds �.

Theorem 2 (Existence and uniqueness). Let M ⊂ R3 be a regular surface and
β :I → M ⊂ R3 be a unit-speed curve given by β =

∫
e2(s)ds with κ2n + τ2g 6= 0.

Then there exists uniquely a relatively osculating developable surface represented
by Eq. (18).
Proof. For the existence, we have the relatively osculating developable surface

along β = β(s) represented by Eq. (18). On the other hand, since Mo is a ruled
surface, we suppose that

Mo : P̃(s, v) = β(s) + vζ(s), (24)

where v ∈ R, with (τg,κn) 6= (0, 0), and

ζ(s) = ζ1(s)e1 + ζ2(s)e2 + ζ3(s)e3, ζ
′
(s) 6= 0.
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It can be immediately seen that Mo is developable if and only if

det(β
′
, ζ, ζ

′
) = 0⇔ ζ3ζ

′

1 − ζ1ζ
′

3 − ζ2 (ζ1τg + ζ3κg) + κn
(
ζ23 + ζ21

)
= 0. (25)

Conversely, since Mo is a relatively osculating developable surface along β = β(s),
we have (

P̃s × P̃v

)
(s, v) = ψ (s, v) e3. (26)

Also, the normal vector P̃s × P̃v at the point (s, 0) is(
P̃s × P̃v

)
(s, 0) = ζ3e1 − ζ1e3. (27)

By means of Eqs. (26) and (27) we find:

ζ3 = 0, and ζ1 = −ψ (s, 0) , (28)

which follows from Eq. (25) that

−ζ1 (ζ1κn + ζ2τg) = 0. (29)

If (s, 0) is a regular point (i.e., ψ (s, 0) 6= 0), then ζ1(s) 6= 0. Thus, we have

ζ2 = −κn
τg
ζ1, with τg 6= 0. (30)

Therefore, we obtain

ζ(s) = ζ1e1 −
κn
τg
ζ1e2 =

ζ1
cosϕ

eo(s), (31)

where (τg,κn) 6= (0, 0), and ϕ 6= π

2
. It follows that ζ(s) becomes equal to the

direction of eo(s). If τg 6= 0 (i.e., ϕ 6= π

2
), we have the same result as the above

case.
On the other hand, suppose that Mo has a singular point at (s0, 0). Then

ψ (s0, 0) = ζ1(s0) = ζ3(s0) = 0, and we have ζ(s0) = ζ2(s0)e2(s0). If the singular
point β(s0) is in the closure of the set of points where the relatively osculating
developable surface along β(s) is regular, then there is a point β(s) in any neigh-
borhood of β(s0) such that the uniqueness of the relatively osculating developable
surface is satisfied at β(s). Passing to the limit s→ s0, uniqueness of the relatively
osculating surface holds at s0. Assume that there is an open interval J ⊆ I such
that Mo is singular at β(s) for any s ∈ J . Then P(s, v) = β(s) + vζ2(s) e2(s) for
any s ∈ J . This means that ζ1(s) = ζ3(s) = 0 for s ∈ J . It follows that(

P̃s × P̃v

)
(s, v) = −vζ22 (τge1 + κge3) . (32)

Thus the above vector is directed to e3, i.e. P̃s×P̃v ‖ e3(s) if and only if κg 6= 0 and
τg = 0 for any s ∈ J . In this case, e0(s) = ±e3. This determines that uniqueness
holds �.
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Proposition 1. Let Mo be the relatively osculating developable surface expressed
by Eq. (18) with (τg,κn) 6= (0, 0). If there are two osculating developable surfaces
along β(s), then β(s) is a straight line.
Proof. Assume that (τg,κn) 6= (0, 0), the relatively osculating developable sur-

face along the direction curve β(s) is unique by Theorem 2. If κn = τg = 0, then
β(s) is a plane curve. In this case, a plane Π at β(s0) is a relatively osculating
developable surface along β(s). If there is another relatively osculating developable
surfaceMo along β(s), thenMo is tangent to Π along β(s). By definition, Π is tan-
gent to Mo along a ruling of Mo, which is β(s). Thus β(s) is a line. If κn = τg = 0
at an isolated point s0 ∈ I except at s0, then there is a point s ∈ I in any neighbor-
hood of s0 such that the uniqueness of the relatively osculating developable surface
is satisfied at s ∈ I. Passing to the limit s → s0, uniqueness of the relatively
osculating developable surface is satisfied at s0 ∈ I �.

Proposition 2. Let Mo be the relatively osculating developable surface expressed
by Eq. (18) with (τg,κn) 6= (0, 0). Then κn = τg = 0 if and only if β(s) is a ruling
of Mo.
Proof. In general, the torsion of the curve β(s) as a space curve is given by

τβ(s) :=
det(β′, β′′,β′′′)∥∥β′ × β′′∥∥2 = −κn +

κgτ
′
g − τgκ′g
τ2g + κ2g

. (33)

Assuming that κn = τg = 0, the torsion τβ becomes constantly equal to 0. Thus,
β(s) becomes a plane curve. Moreover, we have e′3 = −κn e1 − τge2 = 0. The
assumption thatMo is an osculating developable surface implies thatMo is a plane
generated by β(s). Thus β(s) is a line. For the converse, we assume that β(s) =
s∫
0

e2(s)ds is a ruling of the osculating developable Mo. Since β(s) is a ruling in

R3; e2 is a constant vector. The supposition that Mo is a developable surface
determines that e′3 = 0. Thus, by the Darboux equations we have κn = τg = 0 �.
Therefore, we can give the following corollaries:

Corollary 1. The relatively osculating developable surface Mo represented by Eq.
(18) is a non-cylindrical if and only if δo(s) 6= 0.
Proof. It is a straighforward result from the definition of non-cylindirical ruled

surface.

Corollary 2. The relatively osculating developable surface Mo represented by Eq.
(18) is a tangential developable if and only if δo(s) 6= 0, and σo(s) 6= 0.
Proof. According to the proof of Theorem 1, when δo(s) 6= 0, and σo(s) 6= 0, we

have e′o 6= 0, andC′ 6= 0. Since det(β′, eo, e
′
o) = 0, < C′, e′o>=0 and< eo, e

′
o >= 0,

we find C′‖eo. This determines that the surface Mo is a tangent surface �.
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3.1. Special curves on a surface. Based on the Theorem 3.3 of Ref. [8], we
divide the singularities of relatively osculating developable surfaces Mo forward
special curves by using the two invariants δo, and σo in the following:

(A). If κn = 0, then α is an asymptotic line on M , and

Mo : P̃(s, v) = β(s) + ve1(s), v ∈ R. (34)

In this case, we obtain the invariants as follows:

δo = κg, and σo = −

 τg

δo
√
τ2g + κ2g

′ .
Corollary 3. Let Mo be the relatively osculating developable surface expressed by
Eq. (34). Then we have the following:
(1) Mo is non-singular at points P̃(s0, v0) if and only if v0 6= 0.

(2) Mo is locally diffeomorphic to Cuspidal edge CE at points P̃(s0, v0) if and only
if v0 = −κ−1g (s0) 6= 0, and κ′g(s0) 6= 0.

(3) Mo is locally diffeomorphic to Swallowtail SW at points P̃(s0, v0) if and only
if v = −κ−1g (s0) 6= 0, κ′g(s0) = 0, and

(
κ−1g

)′′
(s0) 6= 0.

Here,

CE =
{

(x1, x2, x3)|x1 = u, x2 = v2 , x3 = v3
}
, (see Fig. 1).

SW =
{

(x1, x2, x3)|x1=u, x2=3v2+uv2, x3=4v3+2uv
}
, (see Fig. 2)

}

Figure 1. Cuspidal edge.

Proof. Singularities of the relatively osculating developable surface expressed
by Eq. (34) are

P̃s × P̃v = − (vκg + 1) e3. (35)
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Figure 2. Swallowtail.

Therefore, P̃(s0, v0) is non-singular if and only if P̃s × P̃v 6= 0. This condition is
equivalent to v0 = −κ−1g (s0). This completes the proof of assertion (1). If there is
a parameter s0 such that

v0 = −κ−1g (s0), and v′0 =
κ′g(s0)

κ2g(s0)
6= 0

(
i.e. κ′g 6= 0

)
,

then Mo is locally diffeomorphic to CE at P̃(s0, v0). This completes the proof of
assertion (2). We also have, if there is a parameter s0 such that

v0 = −κ−1g (s0), v′0 =
κ′g(s0)

κ2g(s0)
= 0, and

(
κ−1g

)′′
(s0) 6= 0,

then Mo is locally diffeomorphic to SW at points P̃(s0, v0). This concludes the
proof of affi rmation (3).

(B). If τg = 0, then α becomes a line of curvature on M , and

Mo : P̃(s, v) = β(s)− ve2(s), v ∈ R, (36)

which is recognized as the tangent surface of β(s). In this case we obtain
the invariants as δo = κg, and σo = −1.

Corollary 4. Let Mo be the relatively osculating developable surface expressed by
Eq. (36). Then we have the following:
(1) Mo is non-singular at points P(s0, v0) if and only if v0 6= 0.

(2) Mo is locally diffeomorphic to CE at points P̃(s0, v0) if and only if v0 =
−κ−1g (s0) 6= 0, and κ′g(s0) 6= 0.

(3) Mo is locally diffeomorphic to SW at points P̃(s0, v0) if and only if v =

−κ−1g (s0) 6= 0, κ′g(s0) = 0, and
(
κ−1g

)′′
(s0) 6= 0.
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Proof. Singularities of the relatively osculating developable surface expressed
by Eq. (36) are

P̃s × P̃v = −vκge3. (37)

Therefore, P̃(s0, v0) is non-singular if and only if P̃s × P̃v 6= 0. This condition is
equivalent to v0 = −cκ−1g (s0), c 6= 0. This completes the proof of assertion (1). If
there is a parameter s0 such that

v0 = −cκ−1n (s0), c 6= 0, and v′0 =
cκ′n(s0)

κ2n(s0)
6= 0, (i.e. κ′n 6= 0) ,

then Mo is locally diffeomorphic to CE at P̃(s0, v0). This finishes the proof of
affi rmation (2). Again, if there exists a parameter s0 such that

v0 = −cκ−1g (s0), c 6= 0, v′0 =
cκ′g(s0)

κ2g(s0)
= 0, and

(
κ−1g

)′′
(s0) 6= 0,

thenMo is locally diffeomorphic to SW at pointgs P̃(s0, v0). This finishes the proof
of affi rmation (3) �.

3.1.1. Curves on the unit sphere. We now deal with the case when M is the unit

sphere S2 =
{

x ∈R3 | ‖x‖2 = 1
}
. Let α : I ⊆ R → S2 be a unit speed curve. In

this case, we have t(s) = α′, g(s) = α × t, and since s is a natural parameter of
α(s), it follows that ‖t‖ = 1, and the frame {α = α(s), t(s),g(s)} forms a moving
orthonormal frame fitted to each point of the spherical curve α(s). This frame
is said to be the Darboux frame relative to x(s). By construction, the Darboux
formula is  α

′

t
′

g
′

 =

 0 1 0
−1 0 γ
0 −γ 0

 α
t
g

 , (38)

where γ = γ(s) is the geodesic curvature of α(s). It follows that δo = γ, σo = ±1,

e0 = ±g(s), and β(s) =
s∫
0

g(s)ds. Thus, we have:

Mo : P̃(s, v) = β(s) + vg(s), v ∈ R, (39)

which is recognized as the tangent developable surface of β(s). Then we have the
following lemma as a result of Corollary 4.

Lemma 1. Let Mo be the tangent developable expressed by Eq. (39). Then we
have the following:
(1) Mo is non-singular at points β(s0) if and only if v0 6= 0.
(2) Mo is locally diffeomorphic to CE at points P(s0, v0) if and only if v0 =

−γ−1(s0) 6= 0, and γ
′
(s0) 6= 0.

(3) Mo is locally diffeomorphic to SW at points P(s0, v0) if and only if v =

−γ−1(s0) 6= 0, γ
′
(s0) = 0, and

(
γ−1

)′′
(s0) 6= 0.
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Figure 3.

Figure 4.

4.
Proposition 2. The relatively osculating developable surface Mo

represented by Eq. (39) is a cylindrical if α(s) is a great circle.
Proof. Assume that α(s) becomes a great circle. Then γ(s) = 0, and

g(s) is constant. Therefore, Mo is a circular cylinder.

4.1. Examples. We close this section with some examples:

Example 1. Let the base surface M be given as the following parameterization:

P(s, v) = (cos s− 1√
2
v cos s, sin s− 1√

2
v sin s,

v√
2

). (40)

The directrix curve β of the relatively osculating developable surface is β =

(− 1√
2

sin s,
1√
2

cos s,
s√
2

). The normal curvature and geodesic torsion of the base
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Figure 5.

curve are, respectively, computed as κn = − 1√
2
, and τg = 0. Then the rul-

ing line eo of the relatively osculating developable surface is obtained as eo =

(
1√
2

cos s,
1√
2

sin s,− 1√
2

). As a result, the relatively osculating developable sur-

face Mo is given with the parameterization:

P̃(s, v)=(-
1√
2

sin s+
1√
2
v cos s,

1√
2

cos s+
1√
2
v sin s,

s√
2
-
v√
2

). (41)

The base surface given by (40) and the relatively osculating developable surface
given by (41) have been together plotted in Fig. 3. The relatively osculating
developable surface given by (41) has been alone illustrated in Fig 4. The relatively
osculating developable surface has been illustrated by reflecting surface in Fig. 5.

Example 2. Given the base surface M as follows:

P(s, v)=(cos
s√
2
-

1√
2
v sin

s√
2
, sin

s√
2

+
1√
2
v cos

s√
2
,
s√
2

+
v√
2

). (42)

The directrix curve β of the relatively osculating developable surface is β =

(
√

2 sin
s√
2
,−
√

2 cos
s√
2
, 0). The normal curvature and geodesic torsion of the base

curve are, respectively, computed as κn = 0, and τg =
1

2
. Then the ruling line eo of

the relatively osculating developable surface is obtained as eo = (−1

2
sin

s√
2
,

1

2
cos

s√
2
,

1

2
).

As a result, the relatively osculating developable surfaceMo is given with the below
parameterization:

P̃(s, v) = (
√

2 sin
s√
2
− v

2
sin

s√
2
,−
√

2 cos
s√
2

+
v

2
cos

s√
2
,
v

2
). (43)
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Figure 6.

Figure 7.

The base surface given by (42) and the relatively osculating developable surface
given by (43) have been together plotted in Fig. 6. The relatively osculating
developable surface given by (42) has been alone illustrated in Fig. 7. The relatively
osculating developable surface has been illustrated by reflecting surface in Fig. 8.

5. Conclusion

In this work, we have constructed a developable surface tangent to a surface
forward a curve in the surface which we defined it as relatively osculating devel-
opable surface. We have chosen the curve as the tangent normal direction curve on
which the new surface is formed in Euclidean space. We have obtained some re-
sults about the existence and uniqueness, and the singularities of such developable
surfaces. We have also given two invariants of curves on a surface which describe
these singularities. We have given two results for special curves such as asymptotic
line and line of curvature which are rulings of the relatively osculating developable
surface.
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Figure 8.
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