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Abstract

In an anti-Hermitian linear system, all energy eigenvalues are purely imaginary and the corresponding eigenvectors

are orthogonal. This implies that no stationary state is available in such systems. We consider an anti-Hermitian

lattice with cubic nonlinearity and explore novel nonlinear stationary modes. We discuss that relative population is

conserved in a nonreciprocal tight binding lattice with periodical boundary conditions as opposed to parity-time (PT)

symmetric lattices. We study nonlinear nonrecipocal dimer, triple and quadrimer models and construct stationary

nonlinear modes.
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1. Introduction

Two decades ago, Bender and Boettcher showed that

a non-Hermitian quantum mechanical Hamiltonian with

simultaneousP and T symmetries can have real energy

eigenvalues [1]. Here, theP stands for the parity defined

as the reflection against the origin of the coordinate sys-

tem and the T stands for the the time reversal. In a

decade, extension of PT symmetric systems to include

nonlinearity was suggested [2]. It was shown that steady

states can exist as continuous families in a nonlinear

PT -symmetric system. Over the last decade, nonlin-

ear dynamics of non-Hermitian systems has attracted a

great deal of attention [4, 5]. Nonlinear dissipative sys-

tems are not only of theoretical interest. The theoreti-

cal predictions can be tested in experiments, which can

be realized with current technology using the similar-

ity between the Schrodinger equation and the paraxial

wave equation [3]. Of special importance is PT sym-

metric discrete lattices governed by discrete nonlinear

Schrodinger (dNLS) type equations. In these systems,

the PT -symmetry is obtained by judiciously inserting

balanced gain and loss to lattice sites, which are cou-

pled to their neighbouring sites. It was shown that the

PT -symmetry gets fragile as the number of lattice sites

is increased [6]. The dimer model, which is the simplest
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PT -symmetric nonlinear discrete lattice was shown to

be integrable [7, 8, 9, 10, 11, 12, 13]. More complex

systems such as the nonlinear PT -symmetric trimer

[14, 15], quadrimer [16], 2D PT -symmetric plaque-

ttes [17], generalized nonlinear PT -symmetric lattice

[18, 19, 20], non-Hermitian nonlinear necklaces [21],

asymmetric wave propagation [22] and stability of dis-

crete solitons [23] were alo studied. The dynamics of

such systems were explored [24, 25]. In a recent study, a

nonlinear system with charge-parity-symmetric dimers

was considered [26]. A PT -symmetric coupler, with

additional gain and loss proportional to nonlinear terms

has been studied in [27].

The study of non-Hermitian nonlinear systems has been

mainly restricted to systems with gain and loss impu-

rities in the literature. There are some other ways to

induce non-Hermiticity other than gain and loss impu-

rities [27]. One of them is to introduce non-reciprocity

arising from asymmetrical hopping amplitudes in a lat-

tice [28, 29, 30]. Although PT -symmetric nonlinear

lattices have been studied by many authors [4, 5], the

nonreciprocal nonlinear lattices are mostly unexplored.

In this paper, we start with a linear tight-binding lattice

with asymmetrical hopping amplitudes. We specifically

study anti-Hermitian system and then generalize it to

include nonlinear interaction. In an anti-Hermitian lin-

ear system, i. e., H = −H†, eigenvectors are orthogo-

nal, which implies that one can construct Hilbert space.

However, all energy eigenvalues are purely imaginary.

Therefore no stable state is available. We show that
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nonlinearity leads to stable modes. We explore some

novel effects in nonlinear dimer such as the relative pop-

ulation conservation. We study nonlinear nonreciprocal

dimer, triple and quadrimer models and construct sta-

tionary nonlinear modes.

2. Dimer

Consider a nonreciprocal dimer, which has asymmet-

ric hopping (tunnelling) amplitudes. In the linear case,

the system Hamiltonian is anti-Hermitian, which im-

plies that corresponding eigenvalues are purely imag-

inary. In the presence of conservative Kerr nonlinear

interaction, the dynamical equations are of the form of

discrete nonlinear Schrodinger equations

i u̇1 = κ u2 + g |u1|2 u1

i u̇2 = −κ u1 + g |u2|2 u2 (1)

where the overdot denotes time derivation, g is the non-

linearity strength and the hopping amplitudes in the for-

ward and backward directions have opposite signs with

magnitude κ. This system can describe light propa-

gation through two waveguides coupled to each other

asymmetrically. In this case, u1 and u2 become modal

field amplitudes and time parameter t is replaced by the

propagation distance.

The fundamental difference between the nonreciprocal

dimer and its Hermitian counterpart is that the former

one is lacking the conservation of the total intensity.

Fortunately, the nonreciprocal dimer has its own charac-

teristic conserved quantity. It is the relative population

(intensity), |u1|2 − |u2|2. Using the equations (1), one

can show that the relative population is constant in time

in the nonreciprocal dimer, regardless of initial states

and the nonlinear interaction strength

d(|u1|2 − |u2|2)

dt
= 0 (2)

This implies that no intensity oscillation occurs between

the two sites in both linear and nonlinear cases. The two

sites can have only time-dependent phase difference. As

we will see below, the system can either grow or decay

as a whole with no particle transfer between the sites

in the linear case, g = 0. As opposed to the linear sys-

tem, the total intensity can also be a constant or oscillate

in time while the relative intensity remains constant in

the nonlinear case. Note that neither the total intensity

nor the relative intensity is conserved in time in non-

Hermitian PT -symmetric nonlinear dimer.

Let us first study the linear system g = 0. Suppose that

the system has initially equal probability on both sides.

Then the only difference can come from the phase dif-

ference. Therefore, we write

u2 = eiΛ(t)u1 (3)

where the time-dependent function Λ(t) is the relative

phase. If we substitute this expression into (1), we get

Λ̇ = 2κ cosΛ (4)

The stationary solution for which the phase difference

between the two sites is constant can be obtained by set-

ting Λ̇ = 0. The corresponding solution reads e2iΛ = −1,

which implies that u2(t) = ∓iu1(t). In this case, the so-

lution is given by

(u1, u2) = Ne∓t(1,∓i) (5)

where N is a constant. One can see that the correspond-

ing energy eigenvalues are purely imaginary. In other

words, the two eigenstates either grow or decay in time

depending on the sign of energy eigenvalues. We em-

phasize that these two eigenstates are orthogonal to each

other and hence the Hilbert space exists in the system as

opposed to the most non-Hermitian systems. Therefore,

any initial state can be expanded in terms of these two

eigenstates, which implies that no constant intensity so-

lution is available in the linear case since any initial state

either grows or decays in time.

Let us now study non-stationary solutions of (4).

Assume that the initial condition is given by

Λ(t = 0) = Λ0, where −π ≤ Λ0 ≤ π. It is interesting

to see numerically that the solution rapidly comes to a

fixed number such that cosΛ = 0 (and sinΛ = 1 ). This

means that the final state becomes the eigenstate with +

sign in (5), regardless of initial states. This is because

of the fact that the eigenstate with − sign decays in time

and the other one becomes the remaining eigenstate af-

ter a while. To check our discussion, we numerically

solve (1) at g = 0 for the initial values u1(0) = 1 and

u2(0) = iλ, where λ is a real valued constant. Suppose

that λ is very close to −1. We numerically see that the

solution decays first and then grows in time unbound-

edly. The state at large times is the one with + sign.

As opposed to the linear system where only grow-

ing/decaying solutions are available, the nonlinearity

provides constant intensity solutions. To study them,

we assume u1(t) = e−iEtU1 and u2(t) = e−iEtU2, where E

is a real continuous parameter, U1 and U2 are all time-

independent constants. Therefore, we get

E U1 = κ U2 + g |U1|2 U1

E U2 = −κ U1 + g |U2|2 U2 (6)
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There are two coupled third-degree polynomials so

there exists 9 solutions. One of them is a trivial solu-

tion (U1 = 0,U2 = 0). Therefore, we look for 8 so-

lutions. Note that they satisfy the symmetry condition

(if a particular (U1,U2) satisfies the equation (6), then

(−U1,−U2) is also a solution). Note also that no station-

ary solution with equally distributed intensity between

the two sites (U1 = U2) exists as opposed to both the

Hermitian and PT symmetric nonlinear dimer.

Let us look for solutions where U1 and U2 are real

numbers. This implies that phase current doesn’t

arise between the sites. One can see from (6) that

U2 = κ
−1(E − g U2

1) U1. We can then analytically ob-

tain them

U2
1 =

3E −
√

E2 − 8κ2 ∓
√

8κ2 + 2E(E +
√

E2 − 8κ2)

4g

U2
1 =

3E +
√

E2 − 8κ2 ∓
√

8κ2 + 2E(E −
√

E2 − 8κ2)

4g
(7)

These are nonlinear modes since they are absent in the

linear model, g = 0. We get continuous families of non-

linear modes by varying the free real-valued parameter

E. No such solutions are available if |E| <
√

8κ. In fact,

they exist only for E ≥
√

8κ for g > 0 and E ≤
√

8κ for

g < 0. In Fig.1.a, we plot these modes as a function of

E for g = 1 and κ = 1. Below we study only the modes

with U1 > 0 since the modes are symmetric with respect

to E-axis. As can be seen from the figure, the modes are

bifurcating from zero amplitude at E =
√

8. There are

2 (positive-valued) modes at the branch point E =
√

8

and 4 such modes when E >
√

8. The amplitude of

one of those modes decreases with increasing E while

the amplitudes of all other modes tend to infinity as E

increases. Let us now study the linear stability of these

nonlinear modes by linearizing the nonlinear equations.

Adding small amplitude modulation to a stationary so-

lution changes the initial value of relative population,

which in turn remains constant in time. The small am-

plitude modulation can either cause the system to either

grow unboundedly or oscillate in time as a whole. This

has no analogue in both Hermitian and PT -symmetric

nonlinear dimers. We say that the solution is unstable

if it grows unboundedly as a whole. We perform nu-

merical computation to study stability for the nonlinear

modes with U1 > 0. We numerically see that one of

the 4 modes (the gray curves in the Fig.1) is not stable

against small amplitude modulation as it grows expo-

nentially in time. Fortunately, no such an exponential

growth occurs for all other modes under small ampli-

tude modulation. Instead we see that they make small

amplitude oscillations (breathing) such that |u2|2 − |u1|2
is constant in time. The amplitude of the oscillation is

highest when U1 is the highest.

We have assumed that U1 and U2 are all real numbers.

If one of them is real while the other is purely imag-

inary, then E becomes complex valued. In this case,

the nonlinear wave either grows without bound or the

total intensity oscillates in time (breathing). Similar

dynamics can also be seen when U1 and U2 are real-

valued but not equal to their stationary values given in

(7). The type of dynamics is determined sensitively by

the initial intensities on both sites and the nonlinearity

strength. As an example, let us consider the initial val-

ues u1(0) = u2(0) = 1. The relative population remains

zero at any time and hence it is enough to plot |u1(t)|
since |u1(t)| = |u2(t)|. The Fig. 2 plots it for various

values of g. In the linear case g = 0, u1(t) grows expo-

nentially in time as expected. The growth rate decreases

with increasing |g|. At a critical value of g, the growth

is prevented and the system has oscillating behaviour,

where the amplitude of oscillations decreases with |g|.
For large values of |g|, the system can be considered as

almost stationary since the total intensities oscillate with

very small amplitudes. To this end, we note that nonre-

ciprocal evolution of initial state does not occur in our

system (due to the conservation of relative population)

as it does in the PT -symmetric nonlinear dimer [7].

3. Trimer

Let us now study nonlinear trimer model with asym-

metric hopping amplitudes. The dynamical equations

for the system is given by

i u̇1 = u2 − u3 + g |u1|2 u1

i u̇2 = u3 − u1 + g |u2|2 u2

i u̇3 = u1 − u2 + g |u3|2 u3 (8)

where we set κ = 1 for the sake of simplicity. As op-

posed to the nonreciprocal dimer, the relative probabil-

ity among the sites is not conserved in time. The system

is anti-Hermitian in the linear case g = 0 and hence

all eigenvalues are purely imaginary. Therefore no sta-

tionary solution is available at g = 0. Fortunately the

system can support stationary solutions in the presence

of nonlinear term. Let us look for stationary solutions

of the form ui(t) = e−iEtUi, where E and Ui are all time-

independent constants. Therefore, we get

E U1 = U2 − U3 + g |U1|2 U1

E U2 = U3 − U1 + g |U2|2 U2

E U3 = U1 − U2 + g |U3|2 U3 (9)
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Figure 1: The field amplitude U1 (7) versus energy E (a) for a non-

linear nonreciprocal dimer. The parameters are given by g = 1 and

κ = 1. No such solutions are available if E < 2
√

2. The curve in gray

is unstable against small amplitude modulation and grows unbound-

edly in time. In (b), arbitrary small modulation is introduced to the

solution at E = 4 and the absolute value of the field amplitude |U1 | is
plotted as a function of time t. The one with the gray curve grows in

time while the other ones oscillate in time.

These equations admit at most 33 = 27 solutions since

there are 3 coupled third-degree polynomials. We nu-

merically solve them and plot specifically U1 as a func-

tion of E at g = 1 in the Fig 3.a. Similar plots for U2

and U3 can also be obtained. As can be seen, station-

ary modes exist for all values of E > 0 and the num-

ber of modes increases with the free parameter E. We

see that the amplitudes U1 at a given large values of

E are very close to each other for most of the modes.

Let us now obtain analytical expressions for some of

the modes. Firstly, there is a trivial solution such that

U1 = U2 = U3 = 0. The other modes have symme-

try {−U1,−U2,−U3} and hence it is enough to find the

13 (non-symmetric) solutions. One of them has the uni-

form density and is given by

U1 = U2 = U3 =

√

E

g
(10)

This solution exists for any values of E. In fact, it is the

only nontrivial solution at low values of E. The non-

Figure 2: |u1 | as a function of time for positive (a) and negative values

of nonlinearity strength (b) at κ = 1. We use the initial values u1(0) =

u2(0) = 1 for the numerical solution of (1). The amplitude grows

unboundedly in the linear system g = 0. As |g| is increased, oscillatory

behaviours can be seen. The oscillation amplitude decreases with |g|.
Note that the relative amplitude remains constant in time for all cases.

linearity strength g plays an important role on the dy-

namics of this uniform solution under amplitude mod-

ulation. If |g| is close to 0, then the solution is un-

stable against small amplitude modulation and the to-

tal amplitude grows exponentially in time. For larger

values of |g|, we see that the total amplitude shows

non-periodical oscillatory behavior. In Fig 3.b, we plot

P(t) =

√

u2
1
+ u2

2
+ u2

3
as a function of time for the ini-

tial condition is u1(0) = u2(0) = 1, u3(0) = 0.99. As can

be seen, the amplitude of the oscillation decreases with

increasing g.

There exists 6 other solutions for which one of the mode

amplitudes is small for large values of E. We can then

approximately construct them. Suppose first that U2 is

small, i. e., U2 ≈ 0. Therefore we neglect the nonlinear

term g|U2|2U2 in (9). Consequently, we get

U2 ≈
U3 − U1

E
(11)

If we substitute this into the other two equations in (9)

and assume that E >> 0, then the nonlinear trimer is

4



Figure 3: U1 as a function of energy E as obtained by numerically

solving (9) at g = 1 (a) and P(t) =

√

u2
1
+ u2

2
+ u2

3
as a function of

time as obtained by numerically solving (8) for some values of nonlin-

earity strength g (b) for the nonlinear nonreciprocal trimer. The initial

values for (b) are given by u1(0) = u2(0) = 1, u3(0) = 0.99, where

we introduce small amplitude modulation on u3 (see the solution Equ.

(10)). The amplitude grows unboundedly in the linear system g = 0

as expected. Stability is restored for large values of g.

effectively reduced to the nonlinear dimer

E U1 ≈ −U3 + g |U1|2 U1

E U3 ≈ U1 + g |U3|2 U3 (12)

This has the form of the equation (6) and the corre-

sponding solutions can be obtained using (7). The sta-

bility features of these solutions has already been dis-

cussed in the previous section. We have derived them

under the assumption of small values of U2 If we repeat

our formalism by assuming that U1 is small and U3 is

small, we get 6 such solutions. We numerically check

that this approximation works very well. There are 6

other non-symmetric solutions left. One can get their

exact analytical forms. But it is cumbersome to write

them here. We numerically find that they are stable un-

der arbitrary small amplitude modulation as their total

intensities don’t grow exponentially in time.

4. Quadrimer

Consider now that there are four sites in the sys-

tem. Such a system is known as quadrimer. Taking

into account conservative Kerr nonlinear term, the pe-

riodical system with asymmetric hopping amplitudes is

governed by a system of the following dNLS equation

i u̇1 = u2 − u4 + g |u1|2 u1

i u̇2 = u3 − u1 + g |u2|2 u2

i u̇3 = u4 − u2 + g |u3|2 u3

i u̇4 = u1 − u3 + g |u4|2 u4 (13)

where we set κ = 1 for the sake of simplicity. Despite

the absence of the conservation of total intensity, this

system can conserve the relative total population be-

tween the odd and even values of site numbers

d(|u1|2 + |u3|2 − |u2|2 − |u4|2)

dt
= 0 (14)

Consider first the linear system g = 0. In this case,

all eigenvalues are purely imaginary since the system is

anti-Hermitian and the corresponding eigenvectors form

a Hilbert space. Therefore, any initial state either grows

or decays in time as in the case of the linear nonrecip-

rocal dimer model studied above. Consider next the

nonlinear system g , 0. In this case, stationary solu-

tions are available. Let us look for the solutions of the

form ui(t) = e−iEi tUi ( E3 = E1 and E4 = E2), where

E1 and E2 are real-valued constants , Ui are all time-

independent constants. Therefore, we get

E1 U1 = U2 − U4 + g |U1|2 U1

E2 U2 = U3 − U1 + g |U2|2 U2

E1 U3 = U4 − U2 + g |U3|2 U3

E2 U4 = U1 − U3 + g |U4|2 U4 (15)

We seek solutions of these equations by assuming that

Ui are real-valued constant. There are 4 third-degree

equations and hence there exists at most 34 = 81 solu-

tions. One of them is the trivial solution U1 = U2 =

U3 = U4 = 0 and 40 of them are non-symmetric solu-

tions since (−U1,−U2,−U3,−U4) are their symmetric

solutions. At low values of the parameters E1,2, there is

a few branches of nonlinear modes (which coalesce at

E = 0) and bifurcation occurs as they are increased.

The modes bifurcating from 0 values are given by

U2
1 = U2

3 =
E1

g
, U2

2 = U2
4 =

E2

g
(16)

For small values of E1 and E2, there are no other so-

lutions of (15). They are continuous modes depend-

ing on the two parameters E1 and E2. Unfortunately,

5



we numerically see that these solutions are all unstable

against amplitude modulation as they grow unbound-

edly in time.

Below, we study our system when E1 = E2 = E. We ob-

tain solutions by classifying them according to whether

some modes are dependent to other ones. Let us first

start with the solutions where one of the mode ampli-

tudes is fixed. There are two such solutions. The first

one is given by U4 = −U2. In this case, our system is

reduced to the nonlinear trimer model with open edges.

Note that the set of the equation (9) is written for the pe-

riodical boundary conditions, which does not lead to the

conservation of the relative total population. The second

such solution can be obtained if we assume U3 = −U1.

One can find at most 33 = 27 solutions for these two re-

duced nonlinear trimers. The above solutions (16) with

E1 = E2 = E are also recovered in these solutions. The

Fig. 4 plot P =

√

U2
1
+ U2

2
+ U2

3
+ U2

4
as a function of

E for these two solutions. There are a few modes at low

E and new branches appear as E increases. For large

values of E, there are 27 modes, but most of them are

very close to each other so it is difficult to distinguish

them from the plots. We numerically study stability of

these modes. We find that most of them grow exponen-

tially in time if small amplitude modulations are intro-

duced.

Having studied the case where only one of the modes is

fixed, let us now look for the solutions where two of the

modes are fixed. One can easily see that it is given by

U3 = −U1 , U4 = −U2 (17)

In this case, the quadrimer model is reduced to the dimer

model with κ = 2 (6). The two free parameters U1 and

U2 are given by (7) and U2 = 2−1(E − g U2
1) U1, respec-

tively.

Finally, we study the case where none of the mode am-

plitudes are equal to each other, U1,U2,U3,U4. Un-

fortunately, we can’t obtain exact analytical formulas

for them. We numerically find that these modes are not

stable and they grow unboundedly in time. In Fig. 5, we

plot P =

√

U2
1
+ U2

2
+ U2

3
+ U2

4
and the relative popula-

tion R = U2
1
+ U2

3
− U2

2
− U2

4
as a function of E for all

solutions of (15) at g = 1.

We have seen that the nonlinear quadrimer problem

can be reduced to the nonlinear dimer one. A ques-

tion arises. Can we make such a reduction for a non-

reciprocal nonlinear lattice with large number of lattice

sites? Consider an array of 4N waveguides coupled to

each other asymmetrically, where N is a positive integer.

For N = 1, the system corresponds to the quadrimer as

described above. Assume that the system has periodical

Figure 4: P =

√

U2
1
+ U2

2
+ U2

3
+ U2

4
as a function of energy E as

obtained by numerically solving (15) for U4 = −U2 (a) and U3 = −U1

(b) at g = 1 for the nonlinear nonreciprocal quadrimer. There are at

most 27 solutions, since the system is reduced to the trimer. Note that

most of the modes have the same P.

boundary condition. The system is governed by

i u̇1 = u2 − u4N + g |u1|2 u1

i u̇n = un+1 − un−1 + g |un|2 un

i u̇4N = u1 − u4N−1 + g |u4N |2 u4N (18)

where n = 2, 3, .., 4N−1. One can show that the relative

total population between the odd and even values of site

numbers is conserved in time

d(
∑4N

n=1(|u2n−1|2 − |u2n|2))

dt
= 0 (19)

We can reduce this system as a noninteracting collection

of the nonlinear dimer by assuming

un+2 = (−1)n un (20)

where n = 1, 2, .., 4N − 2. The corresponding stationary

nonlinear modes can be found in the section 2.

5. Conclusion

It is well known that stationary modes appear in non-

linear nonconservative systems. In the literature, non-

linear systems with gain and loss have been mostly ex-

plored and nonreciprocal nonlinear systems have not

6



Figure 5: P =

√

U2
1
+ U2

2
+ U2

3
+ U2

4
and the relative population

R = U2
1
+ U2

3
− U2

2
− U2

4
as a function of energy E at g = 1. We

assume that U1,U2,U3,U4 for the numerical solutions of the Equ.

(15). These modes are not stable.

been understood yet. Here, we have considered nonlin-

ear extension of anti-Hermitian systems. A linear anti-

Hermitian Hamiltonian has purely imaginary eigenval-

ues and orthogonal eigenvectors, which implies that

Hilbert space can be formed. Therefore no stationary

state is available in linear anti-Hermitian systems. We

have constructed stationary nonlinear modes and stud-

ied their stability properties. We have shown that the

nonlinear nonreciprocal dimer do not conserve total in-

tensity but relative population as opposed to parity-time

symmetric non-Hermitian lattices. Therefore, no par-

ticle transfer occurs between the sites and the system

either grows unboundedly or oscillate as a whole. We

have extended our analyses to nonreciprocal trimer and

quadrimer.
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