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This study investigates classical differential geometry of isotropic curves in the 
complex space C3. First, we deal with spherical images of isotropic curves, and then 
obtain some results regarding these curves. Therefore, we continue to study these 
spherical indicatrices as Darboux curves and Bertrand mates. Also, we examine 
isotropic slant helices in C3. Additionally, we show that the vectors of isotropic 
curves and their pseudo-curvatures satisfy a vectorial differential equation of the 
second order with variable coefficients. We study this differential equation under 
some special cases. Finally, we give the conditions for an isotropic curve to be 
Darboux helix in C3. Next, we define the constant breadth of isotropic curves and 
express some characterizations of these curves in terms of E. Cartan equations in C3.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

It is observed that the imaginary curves in the complex space were pioneered by E. Cartan. Cartan 
defined the moving frame of an imaginary curve and its special equations in C

3. In [3], the Cartan equations 
of isotropic curve were extended to the four dimensional complex space C

4. Moreover, Pekmen gave some 
characterizations of minimal curves by means of E. Cartan equations in C

3 [13]. Also Şemin had mentioned 
the complex elements and complex curves in the real space R

3 [16].
In the complex space C

3, helices were characterized by [19]. In complex space C
4, Yılmaz characterized 

the isotropic curves with constant pseudo-curvature which is called the slant isotropic helix [17]. Yılmaz 
and Turgut gave some properties of isotropic helices in C

3 [19]. Recently, the representation formula for an 
isotropic curve with pseudo arc length parameter and the structure function of such curves were defined 
by Qian and they characterized the isotropic Bertrand curve and k-type isotropic helices by using the 
representation and the Frenet formulas [15].
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Several authors introduced different types of helices and investigated their properties. For instance, Barros 
et al. studied general helices in 3-dimensional Lorentzian space [4]. Izumiya and Takeuchi defined slant helices 
by the property that principal normal makes a constant angle with a fixed direction [7]. Recently, Körpınar, 
and Körpınar et al. studied characterization of minimizing energy of biharmonic particles in spacetime [8,9]. 
Kula and Yaylı studied spherical images of tangent and binormal indicatrices of slant helices and also showed 
that spherical images are spherical helices [10]. Ali and Lopez gave some characterizations of slant helices 
in Minkowski 3-space E3

1 [2]. Pekmen and Paşalı characterized unit speed spacelike curves whose images lie 
on a Lorentzian sphere in Minkowski 3-space E

3
1 [14].

The Darboux rotation axis was introduced for a space curve by Barthel [5]. Afterwards, the results 
obtained for Euclidean space in the work of Barthel were studied by Yücesan for a Lorentzian space curve 
[20]. The Darboux vector of isotropic curves was introduced by Semin. Curves of constant breadth were 
introduced by Euler [6]. Variable space is studied by these special curves [12,11,18].

In this work, using not common vector field as Cartan frame, we introduce a new spherical image and 
a Darboux helix in C

3. Also translating Cartan frame’s vector fields to the center of sphere, we obtain the 
spherical indicatrices of isotropic curves. Moreover, we investigate the Darboux vector and Darboux helices 
in C3. Additionally, we study the constant breadth of isotropic curves in the same space.

2. Preliminaries

The three dimensional complex space C
3 is given with the standard flat metric as follows:

〈, 〉 = dx2
2 + 2dx1dx3,

where (x1, x2, x3) is a complex coordinate system of C3.
Let xp be a complex analytic function of a complex variable t. Then the vector function

−→x(t) =
3∑

p=1
xp(t)

−→
kp (1)

is called an imaginary curve, where t = t1 + it2, −→x : C −→ C
3 and 

−→
kp are standard basis unit vectors 

of E3 [1,16].
In this space, a vector which has a minimal direction is called an isotropic vector or minimal vector, 

that is a vector u is a minimal vector if and only if u2 = 0 [16]. The curves, of which the square of the 
distance between the two points is equal to zero, are called minimal or isotropic curves [19]. Let s denote 
pseudo-arclength, a curve is a minimal (isotropic) curve if and only if ds2 = 0, where s denotes the pseudo 
arc-length. Thus it is obvious that an isotropic curve satisfies vectorial differential equation

[−→x′(t)]2 = 0, (2)

where 
dx

dt
= −→x′(t) �= 0.

For each point −→x of the isotropic curve, E. Cartan frame is defined (for well-known complex number 
i2 = −1) as follows, see [1,16].

−→e1 = −→x′,

−→e2 = i−→x′′,

−→e3 = −β−→x′ + −→x′′′, (3)
2
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where β = (−→x′′′)2. The moving E. Cartan frame along the isotropic curve −→x in C
3 is given by (3) which is 

denoted by {−→e1, −→e2, −→e3}. The inner products of these frame vectors are given by

−→ej .
−→ek =

{ 0 if j + k = 1, 2, 3; Mod(4),
1 if j + k = 4.

(4)

The vector and mixed products of these frame vectors are given by

−→ej × −→ek = i−→ej+k−2,
−→e1.(−→e2 × −→e3) = i,

for j, k = 1, 2, 3. The pseudo-arclength

s =
t∫

t0

−[(−→x′′)2] 1
4 dt

is an invariant with respect to parameter t [16]. Thus the vectors −→e1 and −→e3 are isotropic vectors, while −→e2
is a real vector. E. Cartan derivative formulas can be deduced from (3) as follows

−→e ′1 = −i−→e2,

−→e ′2 = i(κ−→e1 + −→e3),
−→e ′3 = −iκ−→e2, (5)

where κ = β

2 is called pseudo-curvature of isotropic curve −→x = −→x(s) [13]. These equations can be used if the 

minimal curve is at least of class C4. Here (′) denotes derivative according to pseudo-arclength s. In the 
rest of the paper, we suppose that pseudo-curvature κ is non-vanishing except in the case of an isotropic 
cubic. Isotropic sphere with center −→m and radius r > 0 in C

3 is defined [17] by

S2 = {−→p = (p1, p2, p3) ∈ C
3 : (−→p − −→m)2 = 0}.

Definition 2.1. An isotropic curve −→x = −→x(s) in C
3 is called an isotropic cubic if pseudo-curvature κ of −→x(s)

is congruent to zero [17].

Definition 2.2. An isotropic curve −→x = −→x(s) in C
3 is called an isotropic helix if the tangent vector e1 of −→x(s)

is isotropic vector [16].
Let −→x = −→x(s) be an isotropic curve with the pseudo-curvature κ �= 0, the pseudo-Darboux vector of the 

curve is defined as

−→e ′q =
−→
w̃0 × −→eq (q = 1, . . . , 3).

If we write the pseudo-Darboux vector of the curve as follows,

−→
w̃0 =

3∑
q=1

−→xq
−→eq,

then we obtain

−→
w̃0 = κ−→e1 − −→e3.
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The norm of Darboux vector of the curve −→x = −→x(s) in C
3 is defined as

‖−→w̃0‖ =
√

(κ−→e1 − −→e3)2 = i
√

2κ

which is called pseudo-Lancret curvature [16].

Definition 2.3. Let −→x = −→x(s) be an isotropic curve in C
3. If there exists another isotropic curve −→x∗(s) in C3

such that principal normal vector field of −→x∗(s) coincides with that of −→x = −→x(s), then the curve −→x(s) is called 
an isotropic Bertrand curve, and −→x∗(s) is called the isotropic Bertrand mate of −→x(s) and vice versa [15].

3. Some characterizations of spherical indicatrices of isotropic curves in CCC
3

In this section, first we give some new characterizations of spherical indicatrices of isotropic curves in C
3. 

Then, we continue to study these spherical indicatrices as Darboux curves and Bertrand mates. Also, we 
examine isotropic slant helices in C

3.

3.1. Spherical indicatrices of isotropic curves in C
3

Definition 3.1. Let α = α(s) be a regular isotropic curve in C
3. If we translate the first vector field −→e1 of 

E. Cartan frame to the center O of the unit isotropic sphere S2, then we obtain spherical image ϕ = ϕ(sϕξ). 
This curve is called Ẽ1 spherical image or indicatrix of the isotropic curve α = α(s).

Theorem 3.1. Let α be a unit isotropic curve and Ẽ1 be a complex unit speed curves in C
3 and Ẽ1 be a first 

spherical image of the isotropic curve α. The E. Cartan apparatus of Ẽ1 ({e1ϕ, e2ϕ, e3ϕ, κϕ}) can be formed 
according to E. Cartan apparatus of α ({e1, e2, e3, κ}).

Proof. Let ϕ = ϕ(sϕ) be the spherical image Ẽ1 of a regular isotropic curve α = α(s). We shall investigate 
relations among the Cartan invariants of α and Ẽ1. First differentiating ϕ gives us

ϕ′ = dϕ

dsϕ
.
dsϕ
ds

= −ie2. (6)

Here we shall denote differentiation according to s by a dash. Taking the norm of (6), we have

e1ϕ = −e2,
dsϕ
ds

= i. (7)

Differentiating (7) gives us

e′1ϕ = de1ϕ

dsϕ
.
dsϕ
ds

= −i(κe1 + e3),

so we have

ė1ϕ = −(κe1 + e3).

Hence we obtain the pseudo-curvature and principal normal of ϕ as

e2ϕ = −i(κe1 + e3), κϕ = −2κ2. (8)
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(5)3 gives us the binormal vector field of the spherical indicatrix Ẽ1 of the isotropic curve α = α(s) as 
follows

e3ϕ = −κe1 + 2κi(κ + 1)e2.

Corollary 3.1. The spherical image Ẽ1 of a regular isotropic curve α = α(s) is not an isotropic curve.

Proof. The result is straightforwardly seen by e1ϕ which is not isotropic vector from (7).

Corollary 3.2. Let ϕ = ϕ(sϕ) be the spherical image Ẽ1 of a regular isotropic curve α = α(s). If the 
pseudo-curvature of α = α(s) is constant, then the spherical indicatrix Ẽ1 of ϕ = ϕ(sϕ) is a pseudo-helix 
in C

3.

Proof. Let ϕ = ϕ(sϕ) be the spherical image Ẽ1 of a regular isotropic curve α = α(s). If the pseudo-curvature 
of α = α(s) is constant in terms of equations (8)2, then we have κϕ = constant. Therefore ϕ is a pseudo 
helix.

Theorem 3.2. Let −→x = −→x(s) be a pseudo-arc lengthed isotropic curve in C
3. The second component of the 

position vector of the curve with respect to pseudo arc lengthed tangent spherical indicatrix satisfies a second 
order differential equation as

d2e2

ds2
ϕ

+ 2iκe2 + 1
i

dκ

dsϕ
(
∫

e2dsϕ) = 0. (9)

Proof. We know that dsϕ
ds

= i from (7)2. Differentiating Cartan derivative equation (5)1 with respect to 

pseudo arc-lengthed parameter of tangent spherical image, we obtain

de1

dsϕ
= de1

ds

dsϕ
ds

= (−ie2)
1
i
. (10)

Rearranging (10), we have

de1

dsϕ
= −e2. (11)

Similarly, if we take a derivative of (5)2 and (5)3, we obtain

de2

dsϕ
= de2

ds

ds

dsϕ
= κe1 + e3,

de3

dsϕ
= de3

ds

ds

dsϕ
= −κe2. (12)

Thus differentiating Cartan derivative formulas with respect to pseudo-arc lengthed parameter of tangent 
spherical image, and using (11) and (12), we get

e′1 = −e2,

e′2 = κe1 + e3,

e′3 = −κe2. (13)
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From (13), we have

e3 = e′2 − κe1. (14)

And from derivative of (14) and (13)1, we obtain the equation (9). The differential equation in (9) is also 
a characterization of the isotropic curve −→x = −→x(s). The position vector of an arbitrary isotropic curve with 
respect to E. Cartan frame can be determined by means of its solution, however a general solution of (9) has 
not yet been found. Due to this, −→x(s) is an isotropic helix for explicit result. Let −→x = −→x(s) be an isotropic 
cubic, then κ = 0. Therefore the differential equation in (9) turns into

d2e2

ds2
ϕ

= 0. (15)

As solution of equation (15), we have

e2(sϕ) = c0 + c1sϕ; c0, c1 being constants.

Let −→x = −→x(s) be an isotropic helix, then κ = constant. Therefore, we have the differential equation in (9)
as follows

d2e2

ds2
ϕ

+ 2iκe2 = 0. (16)

As a solution of equation (16), we get

e2(sϕ) = α1e
−
√

2iκsϕ + α2e
√

2iκsϕ .

Definition 3.2. Let α = α(s) be a regular isotropic curve in C
3. If we translate the second vector field −→e2

of E. Cartan frame to the center O of the unit isotropic sphere S2, we obtain a spherical image γ = γ(sγ). 
This complex curve is called Ẽ2 spherical image or indicatrix of the isotropic curve α = α(s).

Theorem 3.3. Let γ be a unit speed isotropic curve in C3 and Ẽ2 be a second spherical image of the isotropic 
curve α. The E. Cartan apparatus of Ẽ2 ({e1γ , e2γ , e3γ , κγ}) can be formed according to E. Cartan apparatus 
of α ({e1, e2, e3, κ}).

Proof. Let γ = γ(sγ) be the Ẽ2 spherical image of a regular isotropic curve α = α(s). We shall investigate 
relations among the Cartan invariants of α and Ẽ2. First differentiating γ gives us

γ′ = dγ

dsγ
.
dsγ
ds

= i(κe1 + e3). (17)

Similar to spherical image Ẽ2, one can have

e1γ =
√

κ

2 e1 + 1√
2κ

e3,
dsγ
ds

= i
√

2κ, (18)

so differentiating e1γ in (18), we obtain

e′1γ = de1γ
.
dsγ = (

√
κ )′e1 − i

√
2κe2 + 1√ e3
dsγ ds 2 2κ
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or in other words,

ė1γ = 1
i
√

2κ
(
√

κ

2 )′e1 − e2 −
i

2κe3.

Hence we express that

κγ = { 1√
κ

+ 1
2κ (

√
κ

2 )′} + {−
√
κ− 1√

2k
+ k

2
√

2
} i2 ,

e2γ = i√
2κ

(
√

κ

2 )′e1 − ie2 − e3. (19)

By the Cartan formula of the binormal vector, we have

e3γ = [ 1
2κ (

√
κ

2 )′ −
√
κ

2 − κγκ

2 i]e1 + [ i√
2κ

−
√
κ

2 ]e2 + [−κγ

2 i− 1
2
√
κ

]e3. (20)

Theorem 3.4. Let −→x = −→x(s) be pseudo arc-lengthed isotropic curve in C
3. The second component of the 

Cartan frame of the curve with respect to pseudo arc lengthed normal spherical indicatrix satisfies a second 
order differential equation as follows:

d2e2

ds2
γ

+ 1√
2κ

d

dsγ
(
√

2κ)de2

dsγ
+ i

√
2κe2 + (

∫
e2√
2κ

dsγ) 1√
2κ

dκ

dsγ
= 0. (21)

Proof. Let −→x = −→x(s) be pseudo (isotropic) curve in C
3. Since (18), we may write the Cartan frame of this 

curve with respect to pseudo arc-lengthed normal spherical indicatrix

de1

dsγ
= −e2√

2κ
,

de2

dsγ
= κe1 + e3√

2κ
,

de3

dsγ
= −κe2√

2κ
. (22)

From (22)2, we can easily obtain

e3 =
√

2κde2

dsγ
− κe1. (23)

Differentiating (23) and using (22)1, we obtain the equation in (21).
We characterized the isotropic curve −→x = −→x(s) using the differential equation (21). If κ = 0, then the 

equation (21) becomes undefined. In this case, the isotropic curve −→x = −→x(s) can not be an isotropic cubic. 
If κ = constant, then the equation (21) turns into the following form

d2e2

ds2
γ

+ i
√

2κe2 = 0. (24)

The solution of the equation (24) are obtained as follows:

e2(sγ) = δ1e
−i 4√2iκsγ + δ2e

i 4√2iκsγ .

Corollary 3.3. The spherical image Ẽ2 of a regular isotropic curve α = α(s) is not an isotropic curve.

Proof. The result is straightforwardly seen by e1γ which is not isotropic vector from (18)1.
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Corollary 3.4. Let γ = γ(sγ) be the Ẽ2 spherical image of a regular isotropic curve α = α(s). If the 
pseudo-curvature of α = α(s) is zero, then the Ẽ2 spherical indicatrix γ = γ(sγ) is not an isotropic cubic 
in C

3.

Proof. Let γ = γ(sγ) be the Ẽ2 spherical image of a regular isotropic curve α = α(s). If the ratio of 
pseudo-curvatures of α = α(s) is zero in terms of κγ in (19)1, then we have κγ which is undefined. Therefore, 
γ is not an isotropic cubic.

Corollary 3.5. Let γ = γ(sγ) be the Ẽ2 spherical image of a regular isotropic curve α = α(s). If the 
pseudo-curvature of α = α(s) is constant, then the Ẽ2 spherical indicatrix γ = γ(sγ) is a pseudo-helix 
in C

3.

Proof. Let γ = γ(sγ) be the Ẽ2 spherical image of a regular isotropic curve α = α(s). If the pseudo-curvature 
of α = α(s) is constant in terms of κγ in (19)1, then we have κγ = constant. Therefore, γ is a pseudo helix.

Definition 3.3. Let α = α(s) be a regular isotropic curve in C
3. If we translate the third vector field −→e3 of 

E. Cartan frame to the center O of the unit isotropic sphere S2, then we obtain a spherical image ξ = ξ(sξ). 
This complex curve is called Ẽ3 spherical image or indicatrix of the isotropic curve α = α(s).

Theorem 3.5. Let ξ be the unit speed isotropic curve in C3 and Ẽ3 be a third spherical image of the isotropic 
curve α. The E. Cartan apparatus of Ẽ3 ({e1ξ, e2ξ, e3ξ, κξ}) can be formed according to E. Cartan apparatus 
of α ({e1, e2, e3, κ}).

Proof. Let ξ = ξ(sξ) be the Ẽ3 spherical image of a regular isotropic curve α = α(s). First, differentiating 
ξ with respect to s gives us

ξ′ = dξ

dsξ
.
dsξ
ds

= −iκe2.

In terms of Cartan frame vector fields, we immediately arrive at

e1ξ = −e2,
dsξ
ds

= −iκ. (25)

In order to determine pseudo-curvature of ξ, we write

−ė1ξ = −e1 + 1
iκ

e3.

Hence, we immediately reach the following result

e2ξ = −ie1 + 1
κ
e3, κξ = − 2

κ2 . (26)

By the Cartan formula of the isotropic binormal vector, we have

e3ξ = − 2
κ
ie1 + 2

κ
ie2 + [− 2

κ2 i + 1
iκ

( 1
κ

)′]e3. (27)

Corollary 3.6. The spherical image Ẽ3 of a regular isotropic curve α = α(s) is not an isotropic curve.

Proof. The result is straightforwardly seen by e1ξ which is not isotropic vector from (25)1.
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Corollary 3.7. Let ξ = ξ(sξ) be the Ẽ3 spherical image of a regular isotropic curve α = α(s). If the pseudo-
curvature of α = α(s) is zero, then the Ẽ3 spherical indicatrix ξ = ξ(sξ) is not an isotropic cubic in C

3.

Proof. Let ξ = ξ(sξ) be the Ẽ3 spherical image of a regular isotropic curve α = α(s). If the ratio of 
pseudo-curvatures of α = α(s) is zero in terms of κξ in (26)1, we have κξ which is undefined. Therefore, ξ is 
not an isotropic cubic.

Corollary 3.8. Let ξ = ξ(sξ) be the Ẽ3 spherical image of a regular isotropic curve α = α(s). If the pseudo-
curvature of α = α(s) is constant, then the Ẽ3 spherical indicatrix ξ = ξ(sξ) is a pseudo-helix in C

3.

Proof. Let ξ = ξ(sξ) be the Ẽ3 spherical image of a regular isotropic curve α = α(s). If the pseudo-curvature 
of α = α(s) is constant in terms of κξ in (26)1, we have κξ = constant. Therefore, ξ is a pseudo helix.

Theorem 3.6. Let −→x = −→x(s) be pseudo arc-lengthed isotropic curve in C
3. The third component of the position 

vector of the curve with respect to pseudo arc-lengthed binormal spherical indicatrix satisfies a second order 
differential equation

d2e2

ds2
ξ

− (2 + 1
i

dκ

dsξ
)e2 −

1
i

dκ

dsξ
(
∫

e2dsξ) = 0. (28)

Proof. Let −→x = −→x(s) be an isotropic curve in C
3. We know that dsξ

ds
= −iκ from (25)2. Differentiating 

Cartan derivative equation (5)1 with respect to pseudo arc-lengthed parameter of binormal spherical image, 
we obtain

de1

dsξ
= de1

ds

ds

dsξ
= (−ie2)(−

1
iκ

). (29)

Rearranging (29), we have

de1

dsξ
= e2

κ
. (30)

Similarly, if we differentiate (5)2 and (5)3, we obtain

de2

dsξ
= de2

ds

ds

dsξ
= −e1 −

1
κ
e3,

de3

dsξ
= de3

ds

ds

dsξ
= e2. (31)

Thus differentiating Cartan derivative formulas with respect to pseudo-arc lengthed parameter of binormal 
spherical image, and using (30) and (31), we obtain

e′1 = 1
κ
e2,

e′2 = −e1 −
1
κ
e3,

e′3 = e2. (32)

From (32), we have

e3 = −[e′2 + e1]κ. (33)
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By derivatives of (33) and (32)1, we obtain the equation (28). We characterized the isotropic curve −→x = −→x(s)
using the differential equation (28). If κ = 0, then the differential equation (28) becomes isotropic cubic. In 
this case, we get the differential equation as follows:

d2e2

ds2
ξ

− 2e2 = 0. (34)

The solution of the differential equation (34) is obtained as follows:

e2(sξ) = μ1e
−
√

2sξ + μ2e
√

2sξ . (35)

If κ = constant, then the differential equation (28) characterizes isotropic helix. In this case, we obtain the 
differential equation as similar to (34), and so its solution is similar to (35).

Theorem 3.7. Let α = α(s) be an isotropic curve and all of Ẽ1, Ẽ2, Ẽ3 be its spherical indicatrices in C
3. 

Both of Ẽ1 and Ẽ3 are also spherical involutes of the Ẽ3 spherical indicatrix of α.

Proof. Let us denote the isotropic tangent vectors of the spherical indicatrices Ẽ1, Ẽ2 and Ẽ3 as e1ϕ, e1γ , 
e1ξ, respectively. By (7)1, (18)1, and (25)1, these tangent vectors are given as

e1ϕ = −e2, e1γ =
√

κ

2 e1 + 1√
2κ

e3, e1ξ = −e2. (36)

Using the equations (36), we have

〈e1ϕ, e1γ〉 = 〈e1γ , e1ξ〉 = 0.

The tangent vectors of the Ẽ1 and Ẽ3 spherical images are orthogonal to tangent vector of the Ẽ2 spherical 
indicatrix, so the proof is completed.

3.2. Isotropic Darboux spherical indicatrices in C
3

Definition 3.4. Let w̃0 = κe1 − e3 be an isotropic Darboux vector. By translating the unit vector field w̃0 to 
the center O of the unit isotropic sphere S2, we obtain an isotropic (pseudo) spherical image of ξ = ξ(sξ)
which is called Darboux spherical indicatrix in C

3.

Theorem 3.8. Let ξ = ξ(sξ) be unit isotropic Darboux spherical indicatrix of the isotropic curve α in C3. 
The E. Cartan apparatus of w̃0 ({e1w, e2w, e3w, κw}) can be formed according to E. Cartan apparatus of α
({e1, e2, e3, κ}).

Proof. Given the Darboux vector as follows

w̃0 = w̃0(s∗) = κe1 − e3, (37)

where s∗ is the pseudo arc-parameter of w̃0. Differentiating (37) with respect to s, we get

dw̃0

ds
= dw̃0

ds∗
ds∗

ds
= κ′e1.

Therefore, we obtain

e1w = e1,
ds∗ = κ′. (38)

ds
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Using the definition of pseudo-curvature, we have the curvature κw of the curve w̃0 = w̃0(s∗) as follows:

κw = 2( i
κ

)′κ + 4
(iκ′)2 (κ

i
)(κ

i
)′.

Using equation (3)2, we obtain the principal normal as follows:

e2w = i

κ
(κe1 + e3).

Finally, the binormal vector is as follows

e3w = 1
iκ′ [(

i

κ
)′κe1 + 2e2 + ( i

κ
)′e3] − κwe1.

Definition 3.5. An arbitrary isotropic curve −→x = −→x(s) is a called an isotropic Darboux curve if it satisfies

〈e3, w〉 = const.

for a non-zero constant w.

Theorem 3.9. Let −→x = −→x(s) be a Darboux helix, then the axis of the isotropic Darboux helix is as follows:

d = ∓ie1 −
i

κ
e2 + κe3. (39)

Proof. Let w be the vector field such that the function 〈e3, w〉 = κ is constant. There exist l1(s) and l2(s)
such that

d = l1(s)e1 + l2(s)e2 + κe3. (40)

Differentiating (40) and using the derivative formulas in (5), we have

d′ = (l′1 + l2iκ)e1 + (l′2 + l1i)e2 + (κ + l2i)e3.

Since the system {e1, e2, e3} is linearly independent, we obtain

l′1 + l2iκ = 0,

l′2 + l1i = 0,

κ + l2i = 0. (41)

From (41), we find

l1 = ∓i, l2 = − i

κ
. (42)

Substituting (42) into (40), we get the axis of Darboux helix α as in (39).

Theorem 3.10. Let −→x = −→x(s) be an isotropic curve and a Darboux helix in C
3. The pseudo curvature κ of 

the curve −→x(s) satisfies the following non-linear system of equations

∓1 − ( 1
κ

)′ − κ2i = 0, 1
κ

+ κ′ = 0. (43)
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Proof. Since −→x = −→x(s) is a Darboux helix, its axis is as in (39). Differentiating (39) gives us

d′ = e1 + [∓1 − ( i
κ

)′ − κ2i]e2 + [ 1
κ

+ κ′]e3.

Since the system {e2, e3} is linearly independent, we can write the system of equations (43).

Corollary 3.9. Let −→x = −→x(s) be an arbitrary isotropic curve. If −→x = −→x(s) is an isotropic slant helix, then 
w.d = constant.

Proof. It is known that the curve −→x = −→x(s) is a pseudo-helix if and only if its pseudo-curvature κ is constant. 
From the inner product of w and d, we get

w.d = κ2 ∓ i.

Since κ = constant, we find out w.d = constant.

3.3. Spherical indicatrices of isotropic curves as Bertrand mates in C
3

Theorem 3.11. Let −→x = −→x(s) be an isotropic curve in C
3. Both of the Ẽ1 and Ẽ3 spherical indicatrices are

Bertrand mates.

Proof. Let us denote the Ẽ1 and Ẽ3 vectors as e2ϕ and e2ξ, respectively. By the principal normal isotropic 
vectors in (8)1 and (26)1, we have the following equation

e2ϕ = 1
κ
e2ξ,

so the Ẽ1 and Ẽ3 isotropic vectors are linearly dependent. As a result of that, they are Bertrand mates.

Theorem 3.12. Let −→x = −→x(s) be an isotropic curve in C
3. If the Ẽ1 and Ẽ3 spherical indicatrices of isotropic 

curve are Bertrand mates, then

λ(s) = constant.

Proof. From Definition 2.1, we write that

Ẽ1 = Ẽ3 + λe2ξ. (44)

After derivation of (44) with respect to s, we obtain

dẼ1

dsϕ

dsϕ
ds

= dẼ3

dsξ

dsξ
ds

+ λ′e2ξ + λe′2ξ. (45)

Rearranging (45) gives us

e1ϕi = −e1ξiκ + λ′e2ξ − λi(κ′e1 − κe2 − iκe2). (46)

From Definition 2.1, it yields that

e1ϕ ⊥ e2ξ.
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Let’s take the inner product (46) with e2ξ, then we have

dλ

ds
= 0 (47)

which implies that λ(s) = constant.

3.4. Isotropic slant helices in C
3

Definition 3.6. An arbitrary isotropic curve α = α(s) is called a type-1 isotropic slant helix if it satisfies

e2.u = constant, (48)

for constant and non-zero u. An arbitrary isotropic curve α = α(s) is called a type-2 isotropic slant helix if 
it satisfies

e3.u = constant, (49)

for constant and non-zero u.

Theorem 3.13. Let α = α(s) be an isotropic cubic in C
3. If α = α(s) is a type-1 isotropic slant helix, then 

the axis of the curve can be written as

u = ce1, c being constant,

for c ∈ C
3.

Proof. From Definitions 2.1 and 3.6, we know that e2.u = constant, and κ = 0. Differentiating (48) with 
respect to pseudo-arc length parameter s, we find

i(e3 + κe1).u = 0. (50)

From (50), it is seen that e3 ⊥ u, where

u = u1e1 + u2e2. (51)

On the other hand, we see that u2 is constant since

e2.u = constant.

Differentiating (51) and using u′ = 0, we find u1 = c.

Theorem 3.14. Let α = α(s) be an isotropic curve in C
3. Then α = α(s) is a type-2 isotropic slant helix if 

and only if α = α(s) is an isotropic cubic.

Proof. From Definition 3.6, we know that e3.u = constant, and κ = 0.
Differentiating (49), we find

i(e3 + κe1).u = 0. (52)
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From (52), it is obvious that e2 ⊥ u, where

u = v1e1 + v2e2. (53)

Differentiating (53) and using u′ = 0, we have

u′ = (v′1 + v2iκ)e1 − v1ie2 + (v′2 + v2i)e3 = 0.

Hence, we can write

v′1 + v2iκ = 0, v1i = 0, v′2 + v2i = 0. (54)

From (54), it is seen that κ = 0; therefore, α(s) is an isotropic cubic.

4. Isotropic curves of constant breadth in CCC
3

In this section, we define isotropic curves of constant breadth in C3, and we give some characterizations 
of these kind of curves.

Definition 4.1. A regular curve with more than 2-breadths in C3 is called an isotropic Smarandache breadth 
curve.

Let ψ = ψ(s) be an isotropic Smarandache breadth curve. Moreover, let us suppose that ψ = ψ(s) is a 
simple closed isotropic curve in C

3. This curve will be denoted by (δ). The normal plane at every point P
on the curve is also at a single point Q other than P . We call the point Q as the opposite point of P . We 
consider a curve in the class Γ as having parallel tangents T and T ∗ in opposite directions at the opposite 
points ψ and ψ∗ of the curve. A simple closed curve having parallel tangents in opposite directions at 
opposite points can be represented with respect to Cartan frame by the equation

ψ∗(s) = ψ(s) + m1e1 + m2e2 + m3e3, (55)

where mi(s), 1 ≤ i ≤ 3 are arbitrary functions, ψ and ψ∗ are opposite points.
Differentiating (55) and considering Cartan equations, we have

dψ∗

ds
= dψ∗

ds∗
ds∗

ds
= e∗1

ds∗

ds
= (dm1

ds
+ 1 + m2iκ)e1 + (−m1i + dm2

ds
)e2 + (m2i + dm3

ds
−m3iκ)e3. (56)

Using e∗1 = −e1, and rewriting (56) we obtain

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dm1

ds
= −m2iκ− ds∗

ds
− 1,

dm2

ds
= m1i,

dm3

ds
= −m2i + m3iκ.

(57)

If we recall g(s) = −ds∗ − 1 and use it in (57), we get

ds
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dm1

ds
= −m2iκ + g(s),

dm2

ds
= m1i,

dm3

ds
= −m2i + m3iκ.

(58)

Theorem 4.1. Let −→x = −→x(s) be pseudo arc-lengthed isotropic curve in C
3. The first component of the position 

vector of the curve with respect to E. Cartan frame satisfies a second order differential equation

d2m1(s)
ds2 + d

ds
[
∫

m1(s)ds.κ] − dg(s)
ds

= 0. (59)

Proof. From (58)1, we obtain

m2(s) =
g(s) − dm1(s)

ds
iκ(s) . (60)

By substituting (60) into (58)2, we reach the differential equation (59).
Now, we characterized the distance of constant breadth of the curve in C3. If the distance between 

opposite points of (δ) and (δ∗) is constant, then we can write that

‖ψ∗ − ψ‖ = m2
2 + 2m1m3 = l2 = constant. (61)

Hence, differentiating (61), we get

m2
dm2

ds
+ m3

dm1

ds
+ m1

dm3

ds
= 0. (62)

Let us study some cases for the special solution of (60) as follows:
From (61), we write that

m3(m1iκ + dm1

ds
) = 0. (63)

Obviously, there are two cases for (63) as follows

m3 = 0 or dm1

ds
= −m1iκ. (64)

Thus we shall study the following subcases of (64):
Case 1. If m3 = 0, then m1 = m2 = 0. Hence the equation (55) becomes as

ψ∗ = ψ.

Case 2. If dm1

ds
= −m1iκ, then we obtain

m1 = −
∫

m1iκds,

m2 = −
∫

(
∫

m1iκds)ds,

m3 = e−iκs[
∫

e−iκs(−m2i)ds + l4].
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Hence the equation (55) becomes as

ψ∗(s) = ψ(s) + (−
∫

m1iκds)e1 + (−
∫

(
∫

m1iκds)ds)e2 + (e−iκs[
∫

e−iκs(−m2i)ds + l4])e3.

Theorem 4.2. Let −→x = −→x(s) be pseudo arc-lengthed isotropic curve in C
3. There is an isotropic curve of 

constant breadth which lies fully in the subspace e1.

Proof. Let −→x = −→x(s) be pseudo arc-lengthed isotropic curve in C
3. Using m2 = m3 = 0 by means of (58), 

we obtain

m1 = c1 = constant and ds∗ = −ds.

Therefore by (55), isotropic curve of constant breadth lies fully in the subspace e1.

Theorem 4.3. Let −→x = −→x(s) be pseudo arc-lengthed isotropic curve in C
3. There is an isotropic curve of 

constant breadth which lies fully in the subspace e2.

Proof. Let −→x = −→x(s) be pseudo arc-lengthed isotropic curve in C
3. If the components in (58)1 and (58)3 are 

taken as m1 = m3 = 0, it follows that

m2 = c2 = constant and ds∗

ds
= −(c2iκ + 1).

Therefore, isotropic curve of constant breadth lies fully in the subspace e2 by (55).

Theorem 4.4. Let −→x = −→x(s) be pseudo arc-lengthed isotropic curve in C
3. There is an isotropic curve of 

constant breadth which lies fully in the subspace e3.

Proof. Let −→x = −→x(s) be pseudo arc-lengthed isotropic curve in C
3. If the components in (58)1 and (58)3 are 

taken as m1 = m2 = 0. It follows that

m3 = ei
∫
κds and ds∗ = −ds.

Therefore by (56), isotropic curve of constant breadth lies fully in the subspace e3.

The differential equation in (59) is also a characterization of the isotropic curve −→x = −→x(s). The position 
vector of an arbitrary isotropic curve with respect to E. Cartan frame can be determined by means of its 
solution, however, a general solution of (59) has not been found yet. Because of this, let us suppose that 
−→x(s) is pseudo-helix for an explicit result. By this way, one can express

Corollary 4.1. Let −→x = −→x(s) be an isotropic (pseudo) helix in C
3. In the case κ = constant, position vector 

of −→x(s) with respect to E. Cartan frame can be written as

−→x(s) = −→x∗(s) + {l1e−
√
κs + l2e

√
κs + e−

√
κs[

∫ −g′(s)√
κe−

√
κs

ds]

+ e
√
κs[

∫
g′(s)√
κe

√
κs

ds]}e1 + {l1e−
√
κs + l2e

√
κs + e−

√
κs[

∫ −g′(s)√
κe−

√
κs

ds]

+ e
√
κs[

∫
g′(s)√
κe

√
κs

ds]}e2 + {e−iκs

∫
e−iκs(−m2i)ds + l3}e3.
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