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Abstract

Sparsity based regularization has been a popular approach to remedy the mea-
surement scarcity in image reconstruction. Recently, sparsifying transforms
learned from image patches have been utilized as an effective regularizer for
the Magnetic Resonance Imaging (MRI) reconstruction. Here, we infuse addi-
tional global regularization terms to the patch-based transform learning. We
develop an algorithm to solve the resulting novel cost function, which includes
both patchwise and global regularization terms. Extensive simulation results
indicate that the introduced mixed approach has improved MRI reconstruction
performance, when compared to the algorithms which use either of the patchwise
transform learning or global regularization terms alone.

Keywords: Global regularization; image reconstruction; magnetic resonance;
sparsity; transform learning.

1. Introduction

Reconstruction for Magnetic Resonance Imaging (MRI) is an important in-
verse problem in biomedical image processing. Successful reconstruction of the
magnetic resonance (MR) image from heavily undersampled k-space Fourier
samples necessitates the employment of advanced regularization techniques. In
the last decade, a primary resource for regularization has been the quest for
sparsity in a transform domain. As an example, discrete total variation (TV)
minimization [1] and wavelet transform sparsity based regularization [2] have
been widely utilized in various ill-conditioned image restoration problems. Non-
linear solvers from the optimization theory have been adopted for the solution
of these regularized problems. The recent advances in variational regularization
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methods for image restoration have been successfully extended to MRI recon-
struction. Sparsity based regularization for MRI reconstruction has resulted in
novel methods, which utilize a plethora of different penalties for regularization
and again a variety of optimization algorithms to solve the resulting regular-
ized cost functions. In the seminal work [3], TV norm and the `1 norm of
the wavelet transform have jointly been used as regularizers, and a nonlinear
conjugate gradient algorithm has been developed to solve the penalized cost
function. The resulting method has been called as Sparse-MRI or alternatively
compressive sensing MRI [4]. The compressive sensing designation is appropri-
ate, firstly because the enforced `1 norm wavelet sparsity parallels the transform
domain sparsity assumption of compressive sensing. Secondly, the data acqui-
sition strategy in MRI, which consists of subsampling in the frequency domain,
coincides with the data acquisition scheme of compressive sensing. This is be-
cause compressive sensing assumes that data is observed through inner products
with a nonadaptive set of linear functionals, which is exactly what is realized
by Fourier domain subsampling.

The combination of the TV norm and wavelet sparsity penalties for MRI
reconstruction has been considered in a string of additional publications. In
[5] the resulting regularized cost function is minimized using an operator split-
ting approach. [6] considers alternating directions method (ADM) for the same
cost function. In [7], a novel combination of operator and variable splitting
methods is introduced for the minimization. This combined operator and vari-
able splitting approach has been extended in [8]. In [8] a structured sparsity
term for wavelet transform is added to the usual TV norm and unstructured
wavelet sparsity penalties. The assumption of further structure for the wavelet
transform coefficients resulted in additional performance gain [8]. The methods
discussed up to this point consider the regularization of the MRI reconstruc-
tion problem via penalties which are defined using transforms calculated over
the whole image. Be it the finite difference TV seminorm or some function of
the wavelet coefficients with emphasis on sparsity, these penalties are calculated
using nonadaptive transforms of the overall image.

On the other hand, the application of patch-based methodologies has culmi-
nated in improved performance for various inverse problems in imaging [9, 10].
Especially, the synthesis sparsity assumption using an overcomplete dictionary
together with dictionary learning has garnered vast interest [11]. In dictionary
learning (DL) based approaches, patches are extracted either from some initial
source image or from a database with images similar to the image to be re-
stored. The extracted corpus of patches is used to learn an overcomplete set of
atoms which can parsimoniously synthesize the training patches. This synthesis
sparsity modeling of patches and dictionary learning have been applied to the
MRI reconstruction problem. Sparse representation of the reconstructed MR
image patches using an overcomplete and learned dictionary has been utilized
in [12, 13, 14, 15]. [12] and [15] employ K-SVD [16] based methods for dictionary
learning. The DLMRI method of [15] uses the patches of the restored image
itself to learn the dictionary, and the algorithm iterates between the dictionary
learning and image update steps. The recMRI algorithm in [12] first builds a
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dictionary using patches extracted from example images. The learned dictio-
nary is then used to regularize the reconstructed image patches. The dictionary
learning algorithm in [13] on the other hand is a nonparametric Bayesian dic-
tionary learning approach named as beta process factor analysis (BPFA). In
[14] the sequential steps of dictionary learning and data fitting are solved using
a two-level Bregman method with dictionary update. As a further note, [12]
and [13] also employ the TV seminorm regularizer in addition to the patch-wise
sparsity term.

A different means for exerting sparsity in signal modeling has been the anal-
ysis sparsity or co-sparsity [17, 18, 19]. The analysis sparsity notion indicates
the enforcement of sparsity in a transform domain. The analysis sparsity struc-
ture has been used for various image processing problems by learning sparsifying
transforms for patch-wise models [20, 21]. The sparsifying transforms are also
called as operators or dictionaries in the literature. Analysis K-SVD [20] was
one of the earliest methods for analysis operator learning, where the synthesis
dictionary learning method K-SVD [16] has been extended to analysis operator
learning. Other examples for analysis operator learning have been [21, 22]. In
[21] optimization on matrix manifolds is used. [22] considers the Uniformly Nor-
malized Tight Frame (UNTF) constraint together with a projected subgradient
method for optimization.

Recently, a new attempt at analysis operator learning has been presented
under the title of transform learning (TL) [23]. In TL, the main error term for
the optimization problem is defined in the transform domain, which differs from
the analysis operator learning algorithms discussed above. As a consequence of
this modified cost function, the sparse representation step in TL becomes much
simplified [23] when compared to the corresponding steps of the earlier analysis
operator learning algorithms. The novel cost function of TL with its reduced
complexity has inspired further new algorithms for analysis operator learning
such as the Transform K-SVD [24] and Analysis SimCO [25]. The patch-wise
transform learning model with square and overcomplete transforms has initially
been applied to image denoising [26]. The transform learning model has also
been applied to MRI [27]. This analysis sparsity based patch model has been
shown to have competitive MRI reconstruction performance with reduced com-
plexity when compared to the synthesis dictionary learning based methods. We
note that in [27], only patch-based regularization has been implemented without
any image-wide regularization term such as TV norm or wavelet sparsity.

In this paper we aim to combine the global, image-wide regularization as
proposed in papers such as [3] or [7], with the effective patch-wise transform
learning model of [27]. A preliminary version of our approach has been accepted
for presentation in the EUSIPCO 2015 conference [28]. The presentation here
is substantially revised and extended when compared to the conference version.
First of all, without the space limitations of a conference paper, all sections
have been rewritten in an extended and more complete form. In the conference
version we considered only a single wavelet sparsity term, and the developed
algorithm has been called as the Globally regularized Transform Learning MRI
(G-TLMRI). On the other hand, here we consider both global wavelet and TV
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norm regularization terms. This difference results in a revamp of the developed
algorithm when compared to the conference version. In the experiments we have
also utilized more images and various sampling masks. Hence, we have included
new data, additional new results and comparisons.

The outline of this paper is as follows. We first propose a composite cost
function, complete with both image-wide and patch-based penalty terms in Sec-
tion 2. We next develop an algorithm for the minimization of this original cost
function in Section 3. We call the resulting novel algorithm for MRI reconstruc-
tion as Joint Globally regularized and Transform learning MRI (JGT-MRI).
In Section 4 we compare the reconstruction performance of JGT-MRI with
state-of-the-art algorithms from the literature. The results indicate that the
JGT-MRI with composite regularization performs better than the algorithms
which utilize image-wide or patch regularization alone. We conclude the paper
with Section 5.

2. Transform Learning MRI Formulation

The MRI reconstruction problem with image-wide or global regularization
terms can be described as follows.

min
x

1
2‖Fux− y‖22 + ρ1‖Φx‖1 + ρ2‖x‖TV. (1)

This cost function has been considered in various papers such as [3, 5, 6, 7].
In (1), x ∈ CN is the reconstructed MR image in vectorized form. Here,
N = N1 · N2, with N1 × N2 being the size of the image in matrix form. The
operator Fu : CN → Cκ denotes the undersampled Fourier transform operator,
which implements the transition from the vectorized image space to the Fourier
domain k-space. The observation vector is y ∈ Cκ, with y = Fux? + η. The
vector x? denotes the ground truth image, and η is the additive noise in the k-
space. The ratio κ/N is a measure for the intensity of undersampling. The ‖·‖p
term is the `p norm of the argument vector, where ‖·‖1 becomes the commonly
used, sparsity inducing and convex `1 norm. Φ is an image-wide wavelet trans-
form operator, which enforces wavelet domain parsimony for the reconstructed
image vector. Wavelet domain sparsity is a common and effective image prior
commonly used for natural image processing [2].

In (1), ‖·‖TV is the discrete total variation (TV) norm of the argument
vector. The TV norm can be calculated as follows [1].

‖x‖TV =

N1∑
i=1

N2∑
j=1

‖∇(X)i,j‖p. (2)

Here, X ∈ CN1×N2 is the matrix form for the vectorized image x. The gradient
of the matrix X at position (i, j) is denoted by ∇(X)i,j . Here ∇(X)i,j is a vector
of size two, with ∇(X)i,j = [∇1(X)i,j ,∇2(X)i,j ]. The components ∇1 and ∇2
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designate the finite difference operators in the vertical and horizontal directions
of the matrix, respectively. These finite difference operators are defined below.

∇1(X)i,j =

{
Xi+1,j −Xi,j if i < N1

0 if i = N1

(3)

∇2(X)i,j =

{
Xi,j+1 −Xi,j if j < N2

0 if j = N2

(4)

The norm in (2) can be taken as p = 1 or p = 2, which will correspond to the
anisotropic and isotropic TV norms, respectively. In this paper, we will consider
the anisotropic TV norm with p = 1.

(1) includes the data fidelity term ‖Fux−y‖22 together with two global reg-
ularizing penalties calculated using the TV norm and wavelet transform. An-
other paradigm for regularization of the MRI reconstruction problem has been
the patch-wise methods. Recently, the transform learning model for patches
as introduced in [23] has been applied to this problem [27]. The resulting TL
regularized MRI reconstruction algorithm has been called as TLMRI. The cost
function for the TLMRI algorithm can be expressed in the following form, where
we use a modified notation when compared to [27].

(P0) min
Ω,X̂ ,A,x

1
2‖Fux− y‖22 + τ ′‖R(x)− X̂‖2F

+ η‖ΩX̂ −A‖2F + λ′Q(Ω),

s.t. ‖αj‖0 ≤ sj ∀j = 1 . . .M. (5)

In (5), ‖·‖F denotes the Frobenius norm for matrices, and ‖·‖0 is the `0 pseudo-
norm, which counts the nonzero elements of the argument vector. Here, Ω ∈
Cn×n is a learned sparsifying transform for vectorized patches extracted from the
image. As discussed in the analysis operator and transform learning literature
[20, 23], degenerate solutions of Ω such as those with repeated or all zero rows
should be avoided. The Q(·) penalty in the cost function is included to avoid
such degenerate Ω. For the square transform case considered here, Q(Ω) =
‖Ω‖2F − log|detΩ| [23].

The matrix X̂ ∈ Cn×M stores vectorized patches x̂j ∈ Cn as its columns.
The term ‖ΩX̂−A‖2F enforces the patches stored in X̂ to become approximately
sparse with respect to the learned transform Ω. The matrix A ∈ Cn×M includes
the transform domain sparse codes for the patches in X̂ . Each column αj ∈ Cn
of A is a sparse approximation for the transform of the patch x̂j . The condition
‖αj‖0 ≤ sj ensures the sparsity in the transform domain.

Unlike the notation of [27], in (5) we have introduced an explicit patch gen-
erating operator R which simplifies the exposition of the problem. Given a
vectorized image x, R(x) becomes a matrix of patches extracted from x. The
patch matrix R(x) is of the same size as X̂ . Each column of R(x) is a vec-
torized patch extracted from a proper location on x. The extraction of each
patch can be formalized as a matrix multiplication, where the patch column

5
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vector gets calculated as Rjx, ∀j = 1, . . . ,M . M is the total number of ex-
tracted patches, and Rj ∈ {0, 1}n×N , ∀j = 1, . . . ,M are the patch extraction
matrices. The extent of overlap between neighboring patches and the patch
size together determine the total number of patches M , the individual patch
extraction matrices Rj and the overall patch extraction operator R.

The TLMRI algorithm of [27] which minimizes (P0) applies patch-wise reg-
ularization using a learned sparsifying transform. The ‖ΩX̂ − A‖2F term is
the key for this patch-based regularization. The adherence to the original MR
observations is maintained by the ‖Fux − y‖22 data fidelity term. Hence, the
patch-wise regularization and the observation fidelity constraint are decoupled
from each other. The connection between these two separate regularization
realms is provided by the ‖R(x)− X̂‖2F term in (P0) (5).

The simulation results in [27] indicate that the patch-wise transform learning
based TLMRI has performance surpassing the earlier algorithms with nonadap-
tive global transforms, such as the Sparse-MRI algorithm of [3]. TLMRI also has
better performance than the DLMRI algorithm, which uses synthesis sparsity
together with patch-wise dictionary learning [15]. The computational complex-
ity of TLMRI is much reduced when compared to the dictionary learning based
approaches, because TLMRI avoids the NP-hard sparse coding step used in
most dictionary learning algorithms. We note that TLMRI applies patch-wise
regularization together with an observation fidelity term. TLMRI misses a non-
adaptive global regularizer as used in [3, 7]. In this paper, we suggest to bring
these two approaches together by the inclusion of additional global regulariza-
tion term in the TLMRI framework. We outline this novel attempt in the next
chapter.

3. The JGT-MRI Algorithm

We infuse global regularization terms into the TLMRI framework exemplified
by the cost function (P0). We present the novel modified cost function which
includes both patch-wise and global regularizers below.

(P1) min
Ω,X̂ ,A,x

1
2‖Fux− y‖22 + ρ1‖Φx‖1 + ρ2‖x‖TV

+ τ ′‖R(x)− X̂‖2F + η‖ΩX̂ −A‖2F

+ λ′Q(Ω) + β′‖A‖1. (6)

As a first note, in (P1) instead of using the `0 pseudonorm, we have utilized
the ‖A‖1 term to obtain transform domain sparsity. The nonstandard notation
‖A‖1 denotes the sum ‖A‖1 =

∑
j‖αj‖1, where ‖·‖1 with a vector argument is

the `1 norm.
The fundamental change in (P1) when compared to (P0) is the introduction

of the global or image-wide penalties ‖Φx‖1 and ‖x‖TV. The simulations will
indicate that the employment of these global regularizers together with the
patch-wise transform sparsity structure results in enhanced performance. This

6
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model uses patch-wise transform learning and global nonadaptive transform
sparsity jointly. We will call this novel model as JGT-MRI. Now we will try to
formulate an effective algorithm for solving the modified cost function (P1).

The nonconvex minimization problem (P1) (6) is defined over four indepen-
dent variables Ω, X̂ ,A and x. Therefore, a viable strategy is to use an alter-
nating minimization procedure which decouples these variables. This approach
has been used in numerous dictionary and analysis operator learning algorithms
and also in the TLMRI algorithm [27]. The Ω, X̂ and A variables realize the
patch-wise regularization, whereas x is the overall reconstructed image which
is used in the global regularization terms. Hence, it is reasonable to divide the
optimization into two main parts, one defined on x and another defined on the
remaining variables.

3.1. Patch-wise regularization: updating Ω and X̂
The first optimization stage should solve the following cost for constant x.

(P2) min
Ω,X̂ ,A

‖ΩX̂ −A‖2F + λQ(Ω) + β‖A‖1 + τ‖R(x)− X̂‖2F . (7)

Here, all the relevant weighting parameters from (P1) have been normalized by
η. In (P2) there are two forces in action which update the patch estimates X̂ .
Firstly, the patch estimates in X̂ should stay close to the patches of the current
reconstructed imageR(x). This is implied by the ‖R(x)−X̂‖2F term. Secondly,
the patch estimates in X̂ should be structured in such a way such that they
are approximately sparsified by a learned transform Ω. This is enforced by the
‖ΩX̂−A‖2F +β‖A‖1 combination. We will divide the solution for (P2) into two
separate substeps. The original TLMRI algorithm uses a single iteration with
three equations, each defined over one of the three distinct variables Ω, X̂ ,A.
On the other hand, we will use two distinct equations each iterating on two of
the variables, with A being common to both iterations. The two substeps we
use for the solution of (P2) are defined as follows.

(P2.1) min
Ω,A
‖ΩX̂ −A‖2F + λQ(Ω) + β‖A‖1. (8a)

(P2.2) min
X̂ ,A

‖ΩX̂ −A‖2F + β‖A‖1 + τ‖R(x)− X̂‖2F . (8b)

The problem given in (P2.1) learns a sparsifying transform for a constant set
patches X̂ . (P2.2) on the other hand can be considered as patch-wise denoising
problem. Here, the patches in X̂ are denoised versions of the current image
patchesR(x), where the extra structure for denoising is provided by the updated
learned transform Ω. This division in (8) decouples the problem (P2) such that
only a fraction of the patches in X̂ can be used for transform learning, whereas
all patches can be used for denoising. This will allow for reduced computational
complexity in the transform learning part, where the full set of patches can still
be used in denoising for best performance.

7



Page 8 of 21

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The transform learning problem (P2.1) can be approximately solved using
iterative alternation over two steps [23, 24].

(P2.1.1) min
A
‖ΩX̂ −A‖2F + β‖A‖1. (9a)

(P2.1.2) min
Ω
‖ΩX̂ −A‖2F + λQ(Ω). (9b)

Both of the subproblems (9a) and (9b) have exact, closed form solutions [27].
The solution for (9a) can be given as bΩX̂ cβ , where b·cβ denotes the elementwise
soft thresholding operation [29]. The soft thresholded result is calculated as
follows. {

bΩX̂ cβ
}
i,j

=


{
ΩX̂

}
i,j
− β

2 ,
{
ΩX̂

}
i,j
≥ β

2{
ΩX̂

}
i,j

+ β
2 ,

{
ΩX̂

}
i,j
< −β2

0 , else

. (10)

The exact solution for (9b) can be calculated using the SVD of the matrix
L−1X̂AH [27]. Here, L is the solution to the equation X̂ X̂

H
+λI = LLH . The

matrix I denotes the identity matrix of the appropriate size, and (·)H is the
Hermitian transpose. The complete solution is presented in [27].

The patch denoising problem defined in (P2.2) can again be approximately
solved using two alternating steps. These substeps become as follows.

(P2.2.1) min
A
‖ΩX̂ −A‖2F + β‖A‖1. (11a)

(P2.2.2) min
X̂
‖ΩX̂ −A‖2F + τ‖R(x)− X̂‖2F . (11b)

(11a) is of the same form as (9a), hence it is solved by soft thresholding as
presented in (10). Once the sparse codes in A are fixed, the problem (11b) has
a simple least squares solution, which is calculated by (ΩHΩ + τI)−1(ΩHA +
τR(x)). In [27], it has been suggested to maintain the denoising error ‖R(x)−
X̂‖2F below a certain threshold after solving (11b). This condition necessitates
working out the (11a)-(11b) pair for a sequence of changing β values until the
denoising error goes below the threshold. We have not realized this approach
in our setting. In our approach, we have maintained a constant sparsity regu-
larization parameter β, which has simplified the algorithm when compared to
the approach in [27]. With this concluding step, we can state that the Eqns.
(8)-(11) and the corresponding solutions have defined the algorithm for solving
(P2).

3.2. Global regularization terms and observation fidelity
Now, we can consider the second main step for the solution of (P1), namely

the reconstruction step which considers the observation fidelity together with
the global regularization terms.

(P3) min
x

1
2‖Fux− y‖22 + τ ′‖R(x)− X̂‖2F
+ ρ1‖Φx‖1 + ρ2‖x‖TV. (12)

8
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We want to define a new operator R̂(X̂ ) =
(∑

j RT
j x̂j

)
./w. Here “./”

denotes an elementwise division. R̂ is the image generating operator which
converts patches extracted from an image back to the vectorized image. To
accomplish this conversion, the patches are summed together in an appropriate
manner, and the overlapping pixel values are normalized by the proper integer
constants in w as to generate an averaged vectorized image. The vector w ∈ ZN
stores the total numbers of the patches contributing to each particular pixel
position. The problem (P3) can be approximately rewritten as follows by using
this newly defined patch-to-image operator.

(P3′) min
x

1
2

(
‖Fux− y‖22 + τ̂‖x− R̂(X̂ )‖22

)
+ ρ1‖Φx‖1 + ρ2‖x‖TV. (13)

(P3′) has a certain advantage over (P3) by avoiding the R(x) term. The
‖R(x) − X̂‖2F term in (P3) necessitates the recalculation of R(x), everytime
x is updated. Thus a costly image-to-patches conversion is needed everytime
x is updated. After the reformulation in (P3′), this term gets replaced by
‖x − R̂(X̂ )‖22. This term only needs a one time patches-to-image conversion
R̂(X̂ ) using the set of patches X̂ calculated in the previous (P2) step. Therefore,
this conversion of (P3) to the approximately equivalent (P3′) greatly reduces
the complexity of the algorithm.

Now, let us define two auxiliary functions, f and g.

f(x) = 1
2

(
‖Fux− y‖22 + τ̂‖x− R̂(X̂ )‖22

)
. (14a)

g(x) = ρ1‖Φx‖1 + ρ2‖x‖TV. (14b)

Using the definitions from (14), the cost in (P3′) can be rewritten as f(x)+g(x).
We should note that here f(x) is a smooth and differentiable convex function,
and g(x) is a nonsmooth and nondifferentiable convex function. This optimiza-
tion problem calls for the use of proximal splitting methods [30]. However, the
g(x) component is a composite penalty with two distinct terms, which does not
allow the use of a single proximal operator.

The Fast Composite Splitting Algorithm (FCSA) of [7] provides a solution
for this type of problems using both variable and proximal splitting. The FCSA
algorithm uses the proximal operators of both of the terms in the composite
penalty, and it takes an arithmetic average of the results coming from these
individual proximal operators. We use the FCSA algorithm to solve (13) as a
substep of our overall algorithm. The FCSA algorithm as we utilize it, is given
in Alg.1 for completeness.

In Alg.1, γ is the step-size parameter for the gradient descent. Using the
definition of the function f(·) given in (14a), its gradient is calculated as follows.

∇f(x) = FH
u (Fux− y) + τ̂

(
x− R̂(X̂ )

)
. (15)

Here, FH
u is the adjoint operator of the partial Fourier transform Fu. Multi-

plication by FH
u realizes the zero-filled reconstruction for given partial Fourier

9
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Algorithm 1 FCSA Algorithm [7]

Input : Current patch estimates, X̂ , coming from (P2); parameters ρ1, ρ2, γ.
Goal : min

x
f(x) + g(x) , where f(x) and g(x) are defined in (14).

1: Initialize x1 = R̂(X̂ ), z0 = x1, t1 = 1.
2: for i := 1, 2, . . . I do . start of FCSA iteration
3: z = xi − γ∇f(xi)
4: za = proxγ(2ρ1‖Φx‖1, z)
5: zb = proxγ(2ρ2‖x‖TV, z)

6: zi = project
(
(za + zb)/2, [`, u]

)
7: tk+1 =

(
1 +

√
1 + 4t2k

)
/2

8: xi+1 = zi +
(
(tk − 1)/tk+1

)
(zi − zi−1)

9: end for . end of FCSA iteration
10: Output reconstructed MR image x = xI+1.

data. The project(·) operator in Alg.1 is a projection operator, which constrains
the reconstructed pixel values to the [`, u] interval. The constants ` and u denote
the lowest and highest possible pixel intensities, respectively.

The proxγ(h, ·) notation in Alg.1 denotes the proximal operator for the func-
tion h. The proximal operator for a function h is defined as given below [31].

proxγ(h, z) = argmin
u

(
h(u) +

1

2γ
‖u− z‖22

)
. (16)

For h(x) = 2ρ1‖Φx‖1, the proximal operator is realized by soft thresholding in
the transform domain and consequently taking an inverse transform [30].

proxγ(2ρ1‖Φx‖1, z) = Φ−1
{
bΦzc4γρ1

}
. (17)

The proximal operator for the TV norm, proxγ(2ρ2‖x‖TV, z) can also be exactly
solved. An algorithm with complexity O(N) for TV denoising is presented in
[31]. Hence, both of the proximal operators in Alg.1 have efficient realizations.

3.3. JGT-MRI Algorithm
With the solution for (P3′) complete, we have finalized the algorithm to

solve the novel cost function (P1). Eqns. (5-17) constitute this original algo-
rithm, which we call as the JGT-MRI algorithm. A complete description of the
JGT-MRI algorithm is presented in Alg.2. It should be noted that the novel
JGT-MRI, being a hybrid algorithm, utilizes all the parameters as used by the
FCSA and the TLMRI algorithms. JGT-MRI necessitates only one additional
parameter, namely τ̂ .

In Alg.2, the constants I1, I2 and I3 denote the number of iterations for the
individual subsections of the JGT-MRI algorithm. In our simulations we have
utilized only a few (e.g. I1 = 10, I2 = 10 and I3 = 5) iterations of the subsections
in each main iteration. We should note that the modified reconstruction step
(P3′) and its solution constitute the main difference of our proposed method

10
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Algorithm 2 JGT-MRI Algorithm

Input : Observation, y = Fux? + η; parameters ρ1, ρ2, τ ′, τ̂ , η, λ′, β′, γ.
Goal : min

Ω,X̂ ,A,x

1
2‖Fux− y‖22 + ρ1‖Φx‖1 + ρ2‖x‖TV

+ τ ′‖R(x)− X̂‖2F + η‖ΩX̂ −A‖2F + λ′Q(Ω) + β′‖A‖1
1: Initialize x = FH

u y.
2: for i := 1, 2, . . . do . main iteration
3: Initialize X̂ = R(x).
4: min

Ω,A
‖ΩX̂ −A‖2F + λQ(Ω) + β‖A‖1

Solution: Iterate (9), I1 times. . learn transform, Ω
5: min

X̂ ,A
‖ΩX̂ −A‖2F + β‖A‖1 + τ‖R(x)− X̂‖2F

Solution: Iterate (11), I2 times. . update patch estimates, X̂
6: Initialize x = R̂(X̂ ).
7: min

x

1
2

(
‖Fux− y‖22 + τ̂‖x− R̂(X̂ )‖22

)
+ ρ1‖Φx‖1 + ρ2‖x‖TV

Solution: Iterate Alg.1, I3 times. . update image, x
8: end for . end of main iteration
9: Output reconstructed MR image x.

from the TLMRI. The reconstruction step of the TLMRI which lacks the global
regularization term is simply solved by least squares. However, the reconstruc-
tion step for JGT-MRI includes a composite splitting algorithm together with
a modified gradient term.

4. Simulation Results

In this section, we evaluate the performance of the proposed JGT-MRI re-
construction algorithm vis-a-vis state-of-the-art algorithms from the literature.
We utilize three different test images (chest, bust and brain) which are shown
in Fig. 1. Each image is of size 256× 256, and the images are normalized such
that the maximum magnitude becomes unity. We also employ three different
subsampling strategies, namely random, radial and Cartesian subsampling. Ex-
ample masks for 20% subsampling are displayed in Fig. 1. Complex valued
white Gaussian noise with unit-variance is added to the k-space observations.
We realize the Sparse-MRI1 [3], FCSA2 [7], TLMRI [27] and the novel JGT-
MRI algorithms. We also present the results for plain zero-filling reconstruction,
which is calculated as FH

u y.
The ρ1 = ρ2 = 10−3 parameters are common to all algorithms. The JGT-

MRI and TLMRI algorithms share the transform learning related parameters
λ = 105, β = 0.02 and τ = 0.5. The step-size parameter for JGT-MRI and
FCSA is γ = 1. Finally, τ̂ = 10−3 for JGT-MRI. In TL-based algorithms, we
assume maximally overlapping image patches, with patch size 6 × 6 (n = 36).

1http://ranger.uta.edu/~huang/R_CSMRI.htm
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Figure 1: Original test images and sampling mask examples. First column: Original chest,
brain and bust MR images. Second column: Random, radial and Cartesian sampling masks.

From the extracted image patches, only a randomly selected subset of 7200 are
utilized in the transform learning step. In all realized algorithms, we set the total
number of main outer iterations as 40. The inner iteration numbers for JGT-
MRI are I1 = 10, I2 = 10 and I3 = 5. The principal performance measure we
use is the reconstructed image signal-to-noise ratio (SNR). The SNR is defined
as

SNR =
var(x?)
MSE(x)

, (18)

where var(x?) and MSE(x) denote the variance of the original image and the
mean square error between the original and reconstructed images, respectively.

Table 1 shows the reconstruction SNRs in dB for our test images and sam-
pling masks with 20% subsampling. We observe that JGT-MRI algorithm pro-
vides the highest SNR in all simulation setups. When compared with the exist-
ing algorithms, the SNR enhancement obtained via JGT-MRI algorithm is up

12
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Figure 2: Magnitude of reconstruction error for chest image under 20% random sampling.
First row: Zero-filling reconstruction (left), FCSA reconstruction (right). Second row: TLMRI
reconstruction (left), JGT-MRI reconstruction (right).

to 1.6 dB, 0.9 dB and 1.0 dB for random, radial and Cartesian sampling masks,
respectively. We also plot the magnitude of the image reconstruction error for
random sampling mask in Figs. 2, 3 and 4. From these figures, we deduce that
best reconstruction is attained via JGT-MRI algorithm. For instance, JGT-
MRI algorithm results in by far the lowest number of violent error pixels for the
midbrain (mesencephalon) section in Fig. 3. In order to investigate the effect of
undersampling intensity on the performance of the reconstruction algorithms,
we also employed random sampling masks with sampling ratios 10% and 30%.
The reconstruction SNRs in dB for the test images are given in Table 2. This
table shows that when sampling ratio is increased, all the algorithms produce
improved SNRs. However, JGT-MRI algorithm still provides the best SNR in
all settings, which verifies its superior performance.

We also investigate the convergence rate and run times of the algorithms. In
Fig. 5 we present the SNR convergence curves for the chest image under 20%
random sampling. From this figure we can deduce that TLMRI algorithm has
the best convergence rate, whereas the convergence rate of JGT-MRI algorithm
is a compromise between that of FCSA and TLMRI algorithms. For the same
simulation setup, we also provide run times in Table 3. The algorithms are run
in Matlab on a computer with an Intel i5 CPU at 1.7 GHz, 8 GB memory and
64-bit operating system. We observe that FCSA algorithm is by far the fastest.

13
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Figure 3: Magnitude of reconstruction error for brain image under 20% random sampling.
First row: Zero-filling reconstruction (left), FCSA reconstruction (right). Second row: TLMRI
reconstruction (left), JGT-MRI reconstruction (right).

On the other hand, JGT-MRI algorithm is only slightly slower than the TLMRI
algorithm. It is apparent that the time required for JGT-MRI is approximately
equal to the time required for TLMRI plus the time for a single FCSA iteration
time multiplied by I3. This is as expected since in Alg. 2 the steps 4 and 5
comprise a transform learning based update similar to TLMRI, whereas the step
7 uses the FCSA to solve the image update based on composite regularization.
We can state that the additional computational burden due to the novel global
regularization terms introduced into the TLMRI framework is negligible.

In order to further validate our method, we include experiments using phan-
tom data2 acquired from an array of receiver coils [32]. We utilize the 12th
channel of the available data under uniform spiral sampling. For different sam-
pling ratios, the obtained reconstruction SNR values are presented in Table
4. The best SNR is attained via JGT-MRI algorithm for all sampling ratios.
However, the SNR advantage of JGT-MRI algorithm slightly deteriorates as
the sampling resolution decreases. While the SNR enhancement of JGT-MRI
with respect to the next closest algorithm is 1.3 dB for 30% sampling, the SNR
enhancement drops to 0.7 dB for 10% sampling.

2http://mr.usc.edu/download/data (funded by NSF grant CCF-1350563)
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Figure 4: Magnitude of reconstruction error for bust image under 20% random sampling. First
row: Zero-filling reconstruction (left), FCSA reconstruction (right). Second row: TLMRI
reconstruction (left), JGT-MRI reconstruction (right).
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Figure 5: SNR convergence for chest image under 20% random sampling.

5. Conclusions

We have presented a new algorithm called as JGT-MRI for MRI reconstruc-
tion. JGT-MRI algorithm builds upon the patch-based sparsification approach
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of the previously introduced TLMRI. JGT-MRI introduces global regularizers
into the TLMRI framework. The performance of JGT-MRI is compared with
TLMRI and other state-of-the-art methods from the literature. Simulation re-
sults indicate that JGT-MRI has reconstruction performance exceeding all of the
presented competing methods. The combination of patch-wise transform learn-
ing and global regularization terms in JGT-MRI culminates in SNR performance
exceeding the performance of algorithms, which use either of these approaches
alone. Furthermore, reconstruction error figures illustrate the improvement in
visualization achieved by JGT-MRI. The computational time requirement for
JGT-MRI is also only slightly increased when compared to the TLMRI. Hence,
we can state that the combination of the patch-based and global regularization
terms as in JGT-MRI is a promising paradigm for MRI reconstruction which
deserves further study.
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