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Abstract. In this work we define twisted surfaces in Galilean 3-space. In or-

der to construct these surfaces, a planar curve is subjected to two simultaneous

rotations, possibly with different rotation speeds. The existence of Euclidean
rotations and isotropic rotations leads to three distinct types of twisted sur-

faces in Galilean 3-space. Then we classify twisted surfaces in Galilean 3-space
with zero Gaussian curvature or zero mean curvature.

1. Introduction

A surface of revolution or a rotational surface is one of the first examples of a surface
in basically every book on elementary differential geometry, see for instance [10].
Its simple construction, being the trace of a planar curve subjected to a rotation,
is not only attractive from a geometrical point of view, but also makes a surface of
revolution a shape that is found abundantly in real life. The catenoid, obtained by
rotating a catenary, is one of the elementary minimal surfaces.
Extending this class of surfaces of revolution, is the class of helicoidal surfaces or
generalized helicoids, see for example [10]. Indeed, helicoidal surfaces arise when a
planar curve is rotated about an axis, while simultaneously it is translated in the
direction of that rotation axis.
Another possible generalization of surfaces of revolution originates when the planar
curve is not only rotated about an axis in the supporting plane, but simultaneously
is also rotated in that supporting plane. This construction which subjects a planar
curve to two simultaneous rotations is first mentioned in [10] where the resulting
surface is called a twisted surface. It is used there as a generalization of the Möbius
strip and the twisted Klein bottle.
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The third author, together with I. Van de Woestyne, defined twisted surfaces in
Minkowski 3-space and classified those with constant Gaussian curvature or con-
stant mean curvature, see [7, 8, 9]. Later, in [11], a second type of twisted surfaces
in Minkowski 3-space is considered by other authors.
In this article, we define three types of twisted surfaces in Galilean 3-space. The
study of the geometry of this non-Euclidean space was initiated thoroughly by
Röschel in [14]. Lately, several authors used it as ambient space in their research,
see e.g. [1, 4, 5, 6, 12, 16] for examples on special surfaces.
For the twisted surfaces in Galilean 3-space we will examine flatness (that is, zero
Gaussian curvature) and minimality (zero mean curvature) conditions.
First we recall the necessary preliminaries from Galilean 3-space. Then we define
three types of twisted surfaces in Galilean 3-space after which we classify the flat
and the minimal ones.

2. Preliminaries

From [14] we recall here the necessary preliminaries from Galilean 3-space, for more
details, see [1].
Pointing out an absolute figure {ω, f, I} in the 3-dimensional real projective space,
the Galilean 3-space G3 arises in a Cayley-Klein fashion. Here ω is the absolute
plane, f the absolute line and I the fixed elliptic involution of points of f . Then
homogeneous coordinates (x0 : x1 : x2 : x3) are introduced such that ω is given by
x0 = 0, f by x0 = x1 = 0 and I by (0 : 0 : x2 : x3) 7→ (0 : 0 : x3 : −x2). With
regard to the six-parameter group of motions of G3, apart from the absolute plane,
there exist two classes of planes in G3: Euclidean planes which contain f and in
which the induced metric is Euclidean and isotropic planes that do not contain f
and in which the induced metric is isotropic. Also, there are four types of lines in
G3: isotropic lines which intersect f , non-isotropic lines which do not intersect f ,
non-isotropic lines in ω and the absolute line f .
In affine coordinates defined by (x0 : x1 : x2 : x3) = (1 : x1 : x2 : x3), the distance
between two points Pi = (xi, yi, zi) with i ∈ {1, 2} is defined by

d(P1, P2) =

{
|x2 − x1| if x1 6= x2,√

(y2 − y1)2 + (z2 − z1)2 if x1 = x2.

In these coordinates a plane ax + by + cz + d = 0 is Euclidean if a 6= 0 and
b = c = 0 and isotropic otherwise. A vector ~a = (x, y, z) is isotropic if x = 0 and
non-isotropic otherwise. The Galilean scalar product of two vectors ~a = (x, y, z)

and ~b = (x1, y1, z1) is defined by

〈~a,~b〉 =

{
xx1 if x 6= 0 or x1 6= 0,

yy1 + zz1 if x = x1 = 0.

A vector ~a is a unit vector if ‖~a‖ :=
√
〈~a,~a〉 = 1. The Galilean cross product of

two vectors ~a = (x, y, z) and ~b = (x1, y1, z1) (not both isotropic vectors) is defined
as

~a ∧~b =

∣∣∣∣∣∣
0 e2 e3
x y z
x1 y1 z1

∣∣∣∣∣∣ .
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For standard coordinates (x, y, z), the x-axis is non-isotropic while the y-axis and
the z-axis are isotropic. The yz-plane, x = 0, is Euclidean and the xy-plane and
the xz-plane are isotropic.
In order to define twisted surfaces, we need the two types of rotation in G3. A
Euclidean rotation about the non-isotropic x-axis is given by x′

y′

z′

 =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 x
y
z


where θ is the Euclidean angle. An isotropic rotation is given by x′

y′

z′

 =

 1 0 0
θ 1 0
0 0 1

 x
y
z

+

 cθ
c

2
θ2

0


where θ is the isotropic angle and c ∈ R0. Here the bundle of invariant planes is
given by z = constant. Under this isotropic rotation a point P1 = (x1, y1, z1) of G3

is moved over an isotropic circle of radius c in the isotropic plane parameterized by
z = z1. An isotropic circle is a (Euclidean) parabola in an isotropic plane.
Finally, we define curvatures of a surface in G3. For a surface in G3 parameterized
by

ϕ(v1, v2) = (x(v1, v2), y(v1, v2), z(v1, v2)),

denote the first order derivatives for i ∈ {1, 2} by ϕ,i =
∂ϕ

∂vi
(v1, v2). Here we always

assume that the surfaces are admissible, that is, its tangent plane is nowhere a
Euclidean plane. The unit normal vector N of the surface is defined by

N =
ϕ,1 ∧ ϕ,2

w
where w = ‖ϕ,1 ∧ ϕ,2‖ .

The coefficients of the second fundamental form are given by

Lij = 〈ϕ,ijx,1 − x,ijϕ,1

x,1
, N〉 = 〈ϕ,ijx,2 − x,ijϕ,2

x,2
, N〉.

The Gaussian curvature K and the mean curvature H of the surface are defined by

K =
L11L22 − L2

12

w2
and 2H =

2∑
i,j=1

gijLij

where

g1 =
x,2
w
, g2 = −x,1

w
and gij = gigj for i, j ∈ {1, 2}.

3. Twisted surfaces in Galilean 3-space

A twisted surface in G3 is a surface that is constructed similar as in Euclidean or
Minkowski 3-space.

Definition 3.1. A twisted surface in G3 is a surface that is traced out by a planar
curve, the profile curve, on which two different simultaneous rotations are per-
formed, which can have different rotation speeds and of which one keeps invariant
the supporting plane of the profile curve.
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Because of the existence of the different kinds of planes and rotations in G3, different
types of twisted surfaces are to be defined. The supporting plane of the profile
curve can indeed be a Euclidean plane, which only contains isotropic vectors, or an
isotropic plane, which contains both isotropic and non-isotropic vectors. For the
rotations there is either one or there are two possibilities. These choices lead to
three possible types of twisted surfaces in G3 in the following way.

3.1. Type I twisted surface in G3. We start with a profile curve in a Euclidean
plane and rotate it about a Euclidean axis perpendicular to that supporting plane.
Without losing generality, we assume that the profile curve α lies in the yz-plane and
is parameterized by α(t) = (0, f(t), g(t)) with f and g real functions. A Euclidean
rotation about an axis parallel to the non-isotropic x-axis is performed on the profile
curve, 0

a
0

+

 1 0 0
0 cos(bs) sin(bs)
0 − sin(bs) cos(bs)

 0
f(t)
g(t)


=

 0
a+ f(t) cos(bs) + g(t) sin(bs)
−f(t) sin(bs) + g(t) cos(bs)


with a, b ∈ R. Simultaneously, the profile curve is rotated using an isotropic rotation
for which the bundle of invariant planes is given by z = constant, thus, 1 0 0

s 1 0
0 0 1

 0
a+ f(t) cos(bs) + g(t) sin(bs)
−f(t) sin(bs) + g(t) cos(bs)

+

 cs
c

2
s2

0


with c ∈ R0. Therefore, up to a transformation, a type I twisted surface in G3 is
parameterized by

ϕ(s, t) =
(
cs, f(t) cos(bs) + g(t) sin(bs) +

c

2
s2,−f(t) sin(bs) + g(t) cos(bs)

)
.

Remark 3.1. The rotation of the profile curve in its supporting Euclidean plane
cannot be an isotropic rotation since there exists no isotropic rotation that keeps
invariant a Euclidean plane. Therefore, starting with a profile curve in a Euclidean
plane only one type of twisted surfaces can be generated.

3.2. Type II twisted surface in G3. Now we start with a profile curve α in
an isotropic plane which we can assume to be, without losing generality, α(t) =
(f(t), g(t), 0) with f and g real functions. On this profile curve two simultaneous
isotropic rotations are performed, one for which the bundle of invariant planes is
given by z = constant, that is,

 a
0
0

+

 1 0 0
bs 1 0
0 0 1

 f(t)
g(t)

0

+

 bcs
b2c

2
s2

0
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where a, b, c ∈ R with c 6= 0 and simultaneously one for which the bundle of invariant
planes is given by y = constant, thus, 1 0 0

0 1 0
s 0 1


 a+ f(t) + bcs

bsf(t) + g(t) +
b2c

2
s2

0

+

 ds
0
d

2
s2


with d ∈ R0. So, up to a transformation, a type II twisted surface in G3 is param-
eterized by

ϕ(s, t) =

(
f(t) + (bc+ d)s, bsf(t) + g(t) +

b2c

2
s2, (a+ f(t)) s+

(
bc+

d

2

)
s2
)
.

3.3. Type III twisted surface in G3. Finally, again we start with a profile curve
α = (f(t), g(t), 0), with f and g real functions, that lies in the isotropic xy-plane.
Now we perform on α an isotropic rotation for which the bundle of invariant planes
is given by z = constant, 0

a
0

+

 1 0 0
bs 1 0
0 0 1

 f(t)
g(t)

0

+

 bcs
b2c

2
s2

0


with a, b, c ∈ R and c 6= 0. This time, the simultaneous rotation is a Euclidean one
about the non-isotropic x-axis, 1 0 0

0 cos s sin s
0 − sin s cos s


 f(t) + bcs

a+ bsf(t) + g(t) +
b2c

2
s2

0

 .

Hence, up to a transformation, a type III twisted surface in G3 is parameterized by

ϕ(s, t) =

(
f(t) + bcs, cos s

(
a+ bsf(t) + g(t) +

b2c

2
s2
)
,

− sin s

(
a+ bsf(t) + g(t) +

b2c

2
s2
))

.

For all three types of twisted surfaces the parameter b allows the two simultaneous
rotations to have different rotation speeds. If b = 0 the parameterizations of the
twisted surfaces reduce to that of surfaces of revolution in G3 which were defined
and studied in [6].

4. Flat and minimal twisted surfaces in G3

We examine for the three types of twisted surfaces in G3 when they have vanishing
Gaussian curvature, i.e., when they are flat and when they have vanishing mean
curvature, i.e., when they are minimal. Here we copy the terminology that is used
for surfaces in Euclidean 3-space.
Concerning minimal surface in G3, we mention the following important theorem
from [14] which characterizes all minimal surfaces in G3.

Theorem 4.1 ([14]). The minimal surfaces in Galilean 3-space are cones whose
vertex lies on the absolute line f and ruled surfaces of type C, that is, conoidal
surfaces having the absolute line f as the directional line at infinity.
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A type C ruled surface is a ruled surface parameterized by

ϕ(s, t) = (s, f(s), 0) + t (0, β2(s), β3(s))

with f , β2 and β3 at least three times continuous differentiable real functions such
that β2(s)2 + β3(s)2 = 1 for all s.
In this section we perform patch computations on the parameterizations that are
presented in the previous section. Hereby we always assume that the constant b
appearing in those parameterizations is non-zero. A study of the case b = 0, that
is, surfaces of revolution in G3 with vanishing curvature, can be found in [6].

4.1. Zero curvature type I twisted surfaces in G3. For a type I twisted surface
in G3 parametrized by

ϕ(s, t) =
(
cs, f(t) cos(bs) + g(t) sin(bs) +

c

2
s2,−f(t) sin(bs) + g(t) cos(bs)

)
with b, c ∈ R0 we calculate the Gaussian curvature and the mean curvature to be

K =
(f ′g′′ − f ′′g′) [b2(fg′ − f ′g) + c(f ′ sin(bs)− g′ cos(bs))]− b2(f ′2 + g′2)2

c2(f ′2 + g′2)2

and

H = sgn(c)
f ′g′′ − f ′′g′

2(f ′2 + g′2)3/2
.

Here and in the remainder of the paper we often drop the parameter of the functions
f and g for reasons of readability. Primes denote derivation and by sgn we mean
the sign function. Remark that f ′ and g′ can not be both identically zero since
then the surface is not admissible.
Considering the flatness condition, we prove the following non-existence result.

Theorem 4.2. Excluding the surfaces of revolution, there do not exist flat type I
twisted surfaces in G3.

Proof. If the expression K = 0 is derived with respect to s one obtains

bc (f ′ cos(bs) + g′ sin(bs)) (f ′g′′ − f ′′g′) = 0.

Now we know that b and c are non-zero. If f ′ cos(bs) + g′ sin(bs) = 0 then, because
of the linear independency of the sine and cosine functions, f ′ = g′ = 0. But then
the surface is not admissible so we exclude this case. Thus f ′g′′ = f ′′g′. If this is

inserted in the expression K = 0 it reduces to b2
(
f ′2 + g′2

)2
= 0, which leads to a

contradiction. Therefore, when we exclude the surfaces of revolution, there do not
exist flat type I twisted surfaces in G3. �

With concern to the minimality condition, we prove the following theorem.

Theorem 4.3. Excluding the surfaces of revolution, a type I twisted surface in G3

is minimal if and only if it is a type C ruled surface parameterized by

(1) ϕ(s, t) = (cs, q cos(bs) +
c

2
s2,−q sin(bs))

+ t (0, p cos(bs) + sin(bs), cos(bs)− p sin(bs)) ,

here p, q ∈ R.
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(a) A minimal type I twisted surface which is
a type C ruled surface, parameterized by (1)

with b = 3, c = 4, p = q = 1.

(b) A minimal type III twisted surface which
is a type C ruled surface, parameterized by (6)

with a = 2, b = 1
2

, c = 4, p = 1.

Figure 1. Minimal type I and type III twisted surfaces.

Proof. There are three cases in which H = 0. It can be that f ′ = 0 and g′ 6= 0
or vice versa. Then we obtain, up to a transformation, parameterization (1) with
p = 0 or (1) with the sine and cosine functions interchanged, respectively. If f ′ 6= 0

and g′ 6= 0 then H = 0 if and only if
f ′′

f ′
=
g′′

g′
, which leads to g(t) = pf(t) + q with

p, q ∈ R and p 6= 0. Therefore, if necessary after reparameterizing with f(u) = t,
we obtain parameterization (1). �

The following corollary is immediate from Theorem 4.3 and Theorem 2 in [6].

Corollary 4.1. A type I twisted surface in G3 is a minimal surface if and only if
its profile curve is an isotropic straight line.

See Figure 1(a) for a drawing of a minimal type I twisted surface.
Remark that for type I twisted surfaces the flatness and minimality condition are
not equivalent, contrary to the equivalency of these conditions for type I surfaces
of revolution, see [6].

4.2. Zero curvature type II twisted surfaces in G3. For a type II twisted
surface in G3 parametrized by
(2)

ϕ(s, t) =

(
f(t) + (bc+ d)s, bsf(t) + g(t) +

b2c

2
s2, (a+ f(t))s+

(
bc+

d

2

)
s2
)

with a, b, c, d ∈ R and bcd 6= 0, the expression for the Gaussian curvature is

K =
1

w4

[{
bf ′
(
abc+ (bc+ d)2s

)
− b(bc+ d)ff ′

+(2bc+ d)(bc+ d)g′} (a+ bcs+ f)(f ′g′′ − f ′′g′)
−f ′2 {b(a+ (bc+ d)s)f ′ + (bc+ d)g′}

]
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and the mean curvature is

H =
1

2w3

[
−bf ′3

(
a(bc+ 2d) + (bc+ d)2s

)
− b(bc+ d)ff ′3

−d(bc+ d)f ′2g′ + (bc+ d)2(a+ bcs+ f)(f ′g′′ − f ′′g′)
]
.

Here w2 = f ′2 (a+ bcs+ f)
2

+ (b(ds− f)f ′ + (bc+ d)g′)
2
. Again, remark that f ′

and g′ can not be both identically zero since then the surface is not admissible.
The following classification theorem is valid.

Theorem 4.4. When excluding the surfaces of revolution, a type II twisted surface
in Galilean 3-space is flat/minimal if and only if it is (up to a transformation)
either

(1) an isotropic plane, parameterized by

(3) ϕ(s, t) =

(
f(t), bsf(t) + g(t) +

b2c

2
s2, sf(t) +

bc

2
s2
)
,

(2) a type C ruled surface (parabolic cylinder) parameterized by

(4) ϕ(s, t) =

(
p+ (bc+ d)s, bps+

b2c

2
s2, (a+ p)s+

(
bc+

d

2

)
s2
)

+ t(0, 1, 0),

(3) a cyclic surface (parabolic sphere) parameterized by (2) with g satisfying,

(5) g(t) =
(bc+ d)f2(t) + 2adf(t)− p

2c(bc+ d)
,

where a, b, c, d, p ∈ R and bcd 6= 0.

Proof. We give here the proof for the flat surfaces, for the minimal surfaces one
has to proceed similarly. The expression K = 0 is a second degree polynomial in
s, hence all the coefficients must be zero. The coefficient of the quadratic term is
−b2(bc+ d)2f ′

(
f ′3 + c(f ′′g′ − f ′g′′)

)
. This leads to three cases to consider.

Case 1 d = −bc.
The coefficient of the linear term of the expression K = 0 reduces to

ab3c2f ′(f ′g′′ − f ′′g′).

If a is zero, then K = 0 and we obtain parameterization (3). For f ′ = 0 the surface
is not admissible and f ′g′′ = f ′′g′ leads to a contradiction or to the previous subcase
since then abf ′ = 0 from the constant term in the condition K = 0.
Case 2 f ′ = 0.
In this case we obtain parameterization (4).
Case 3 f ′3 = c(f ′g′′ − f ′′g′).
Here we have to assume that g′ 6= 0 since otherwise also f ′ = 0 and in that case
the surface is not admissible. Thus we can solve the condition for an expression for
f ′′ which is then inserted in the equation K = 0. The linear term of that equation
then has as a coefficient

bd

c
f ′3 ((bc+ d)ff ′ − (bc+ d)cg′ + adf ′) .

Since bdf ′ 6= 0, the last term of this coefficient must be zero. Integrating that term
leads to condition (5). �
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It is easy to see that in parameterization (2), when condition (5) is valid, the
components satisfy,

((bc+ d)x+ ad)
2 − 2c(bc+ d)2y − 2d(bc+ d)2z = 2p(bc+ d) + a2d2

which characterizes a cyclic surface, see [15]. Moreover, setting u = f(t) + (bc+d)s

and v = (a + f(t))s +

(
bc+

d

2

)
s2, parameterization (2), incorporating condition

(5), is rewritten to

ϕ(u, v) =

(
u,

1

2c

(
u+

ad

bc+ d

)2

+
p

2c(bc+ d)
− a2d2

2c(bc+ d)2
, 0

)
+ v

(
0,−d

c
, 1

)
from which it is immediate that it is the parameterization of a type C ruled surface.
Remark that although it is not immediate seen from the expressions for K and H,
it is clear from Theorem 4.4 that for type II twisted surfaces the minimality and
the flatness conditions are equivalent. This is also the case for type II surfaces of
revolution, see [6].

4.3. Zero curvature type III twisted surfaces in G3. A type III twisted sur-
face in G3 parameterized by

ϕ(s, t) = (f(t) + bcs, h(s, t) cos s,−h(s, t) sin s)

with h(s, t) = a+ bsf(t) + g(t) +
b2c

2
s2 where a, b, c ∈ R and bc 6= 0 has

K =
1

w4
[h(f ′′g′ − f ′g′′) (hf ′(h− hss)− 2hs(bcht − f ′hs))

− (ht(f
′hs − bcht)− f ′hhst)

2
]

and

H =
1

2w3

[
f ′2 (hf ′(h− hss)− 2hs(bcht − f ′hs))

−2bcf ′ (ht(f
′hs − bcht)− f ′hhst) + b2c2h(f ′′g′ − f ′g′′)

]
with w2 = (bcht−f ′hs)2 +h2f ′2. Subscripts denote derivation with respect to that
variable or those variables. Also for these type III twisted surfaces f ′ and g′ can
not be zero simultaneously since then the surface is not admissible. Analougous as
for the type I twisted surfaces, also a non-existence result for flat type III twisted
surfaces in G3 is valid.

Theorem 4.5. When excluding the surfaces of revolution, there exists no flat type
III twisted surface in Galilean 3-space.

Proof. The condition that K is zero is a fourth degree polynomial in s with the
fourth order coefficient equal to −16b6c2f ′4. All the coefficients of that polynomial
must be zero. That means that f ′ = 0. When this is inserted in the condition
K = 0, it reduces to −16b2c2g′4 = 0. But then this leads to a contradiction since
f ′ and g′ can not be both zero since then the surface is not admissible. �

Similar one proofs the following classification theorem of minimal type III twisted
surfaces in G3.
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Theorem 4.6. A minimal type III twisted surface in G3 is a type C ruled surface
parameterized by

(6) ϕ(s, t) =

(
p+ bcs, cos s

(
a+ pbs+

b2c

2
s2
)
,

− sin s

(
a+ pbs+

b2c

2
s2
))

+ t(0, cos s,− sin s)

with p ∈ R.

This minimal type III twisted surface has constant Gaussian curvature. See Figure
1(b) for a drawing of a minimal type III twisted surface.
Remark that in Theorem 4.6 it is not necessary to exclude the type III surfaces of
revolution since there do not exist minimal ones, see [6].

5. Conclusion, further research and acknowledgment

We defined three types of twisted surfaces in Galilean 3-space and studied flatness
and minimality conditions for these surfaces. We proved that there do not exist
flat type I nor flat type III twisted surfaces in G3. On the other hand all the flat
type II twisted surfaces in G3 are also minimal and vice versa.
There also exists a pseudo-Galilean 3-space G3

1 which is related to Galilean 3-
space in a similar way as Minkowski 3-space is related to Euclidean 3-space, see
for instance [2, 3, 13]. Without going into detail here, the pseudo-Galilean scalar

product of two vectors ~a = (x, y, z) and ~b = (x1, y1, z1) in G3
1 is defined by

〈~a,~b〉1 =

{
xx1 if x 6= 0 or x1 6= 0,

yy1 − zz1 if x = x1 = 0.

Because of this there exist four types of isotropic vectors ~a = (0, y, z) in G3
1: space-

like ones (if y2−z2 > 0), timelike ones (if y2−z2 < 0) and two types of lightlike ones
(if y = ±z). Analougously as in Minkowski 3-space, instead of the trigonometric
functions, the hyperbolic functions must be used to describe rotations. Therefore
it is clear that one can also define different types of twisted surfaces in G3

1. This
could be a subject for further research. Also, the constant curvature twisted sur-
faces in G3 could be examined in future works, although the computations might
be significant harder in some cases.
For the calculations in this article we used the computer algebra system Maple.
The drawings in this article are made with VisuMath, www.visumath.be.
We are very grateful to the referee for the valuable comments which improved the
first version of this manuscript.
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[13] Ž. Milin Šipuš and B. Divjak, Surfaces of constant curvature in the pseudo-Galilean
space, Internat. J. Math. Math. Sci., vol. 2012, Article ID 375264, 28 pages, 2012.

DOI:10.1155/2012/375264
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