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ON THE GLOBAL ASYMPTOTIC STABILITY OF A TWO
DIMENSIONAL SYSTEM OF DIFFERENCE EQUATIONS WITH

QUADRATIC TERMS

ERKAN TAŞDEMIR

Abstract. In this paper, we study the global asymptotically stability of fol-
lowing system of difference equations with quadratic terms:

xn+1 = A+B
yn

y2n−1
, yn+1 = A+B

xn

x2n−1

where A and B are positive numbers and the initial values are positive numbers.
We also investigate the rate of convergence and oscillation behaviour of the
solutions of related system.

1. Introduction

Over the last two decades, difference equations or their systems have been huge
attention among researchers which is mathematician or not. Moreover difference
equations or systems have too many applications between many branches of science.
For example, in [13] Khan et al studied global dynamics of an one-dimensional
discrete-time laser model. Further in [7] Din et al studied stability of a discrete
ecological model. There are many examples related to applications of difference
equations or systems. Therefore, studies on difference equations are increasing day
by day and will continue to increase. Additionally, there are many papers related
to our study as follows:
In [24], Yang et al investigated the solutions, stability and asymptotic behavior

of the system of the two nonlinear difference equations

xn+1 =
Axn

1 + ypn
, yn+1 =

Byn
1 + xpn

.

In [8], Elabbasy et al studied the global behaviour of following system of differ-
ence equations

xn+1 =
a1xn

a2 + a3yrn
, yn+1 =

b1yn
b2 + b3xrn

.

In [3], Bacani et al considered solutions of the following two nonlinear difference
equations

xn+1 =
q

p+ xvn
, yn+1 =

q

−p+ yvn
.
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In [11], Hadziabdic et al studied global behaviours of following system of differ-
ence equations

xn+1 =
b1x

2
n

A1 + y2
n

, yn+1 =
a2 + c2y

2
n

x2
n

.

In [5], Burgic et al investigated the global stability properties and asymptotic
behavior of solutions for the system of difference equations

xn+1 =
xn

a+ y2
n

, yn+1 =
yn

b+ x2
n

.

In [4], Beso et al studied boundedness of solutions of following difference equation

xn+1 = γ + δ
xn
x2
n−1

.

They also investigated global asymptotic stability of relatd difference equation.
Motivated by difference equations and their systems, we consider the following

system of difference equations

(1.1) xn+1 = A+B
yn
y2
n−1

, yn+1 = A+B
xn
x2
n−1

where A and B are positive numbers and the initial values are positive numbers.
In this paper we study the stability, global behaviour and rate of convergence of
solutions of system (1.1). We also investigate the oscillation behaviour of solutions
of related system.
In this here, we give two theorems which are used during this study.

Theorem 1.1 (Linearized Stability Theorem [16], p.11). Assume that

Xn+1 = F (Xn) , n = 0, 1, · · · ,

is a system of difference equations such that X̄ is a fixed point of F .

(i): If all eigenvalues of the Jacobian matrix B about X̄ lie inside the open
unit disk |λ| < 1, that is, if all of them have absolute value less than one,
then X̄ is locally asymptotically stable.

(ii): If at least one of them has a modulus greater than one, then X̄ is unstable.

Theorem 1.2. [2] Let n ∈ N+
n0 and g (n, u, v) be a decreasing function in u and v

for any fixed n. Suppose that for n ≥ n0, the inqualities

yn+1 ≤ g (n, yn, yn−1)

un+1 ≥ g (n, yn, yn−1)

hold. Then

yn0−1 ≤ un0−1, yn0 ≤ un0
implies that

yn ≤ un, n ≥ n0.
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2. Linearized Stability of System

First of all, we consider the change of the variables for system (1.1) as follows:

tn =
xn
A
, zn =

yn
A
.

From this, system (1.1) transform into following system:

(2.1) tn+1 = 1 + p
zn
z2
n−1

, zn+1 = 1 + p
tn
t2n−1

where p = B
A2 > 0. From now on, we study the system (2.1).

Lemma 2.1. Let p > 0. Unique positive equilibrium point of system (2.1) is

(t̄, z̄) =

(
1 +
√

1 + 4p

2
,

1 +
√

1 + 4p

2

)
.

Now, we consider a transformation as follows:

(tn, tn−1, zn, zn−1)→ (f, f1, g, g1)

where f = 1 + p zn
z2n−1

, f1 = tn, g = 1 + p tn
t2n−1

, g1 = zn. Thus we get the jacobian

matrix about equilibrium point (t̄, z̄):

B (t̄, z̄) =


0 0 p

z̄2
−2p
z̄2

1 0 0 0
p
t̄2

−2p
t̄2 0 0

0 0 1 0

 .

Thus, the linearized system of system (2.1) about the unique positive equilibrium
point is given by XN+1 = B (t̄, z̄)XN , where

XN =


tn
tn−1

zn
zn−1

 ,

B (t̄, z̄) =


0 0 p

z̄2
−2p
z̄2

1 0 0 0
p
t̄2

−2p
t̄2 0 0

0 0 1 0

 .

Hence, the characteristic equation of B (t̄, z̄) about the unique positive equilibrium
point (t̄, z̄) is

λ4 − p2

t̄2z̄2
λ2 +

4p2

t̄2z̄2
λ− 4p2

t̄2z̄2
= 0.

Due to t̄ = z̄, we can rearrange the characteristic equation such that

λ4 − p2

t̄4
λ2 +

4p2

t̄4
λ− 4p2

t̄4
= 0.
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Therefore, we obtain the four roots of characteristic equation as follows:

λ1 =
p+

√
p2 − 8pt̄2

2t̄2
,

λ2 =
p−

√
p2 − 8pt̄2

2t̄2
,

λ3 =
−p+

√
p2 + 8pt̄2

2t̄2
,

λ4 =
−p−

√
p2 + 8pt̄2

2t̄2
.

Now, we calculate t̄2 and write in λ1. Then we have

λ1 =
p+

√
p2 − 4p

(
1 + 2p+

√
4p+ 1

)
1 + 2p+

√
4p+ 1

=
p+

√
−7p2 − 4p− 4p

√
1 + 4p

1 + 2p+
√

4p+ 1

=
p+

√
7p2 + 4p+ 4p

√
1 + 4pi

1 + 2p+
√

4p+ 1
.

Thus straightforward calculations show that

|λ1| =
2
√

2p

1 +
√

1 + 4p
.

Additionally, we obtain similarly calculations that

|λ2| =
2
√

2p

1 +
√

1 + 4p
.

On the other hand, we consider λ3 as follows:

λ3 =
−p+

√
9p2 + 4p+ 4p

√
4p+ 1

1 + 2p+
√

4p+ 1

=
−p+

√(
3p+

√
1 + 4p

)2 − 1− 2p
√

4p+ 1

1 + 2p+
√

4p+ 1

<
−p+

√(
3p+

√
1 + 4p

)2
1 + 2p+

√
4p+ 1

=
2p+

√
1 + 4p

1 + 2p+
√

4p+ 1
< 1.

Moreover we clearly see that λ3 > 0. So 0 < λ3 < 1 for all p > 0. Similar
calculations we have that −1 < λ4 < 0 for all p > 0.

Theorem 2.2. Suppose that p > 0. Then the following cases hold for system (2.1):
i.: If p < 2 then the equilibrium point of system (2.1) is locally asymptotically
stable.

ii.: If p = 2 then the equilibrium point of system (2.1) is a non-hyperbolic
equilibrium.

iii.: If p > 2 then the equilibrium point of system (2.1) is a repeller.
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Proof. Firstly we know that |λ3| , |λ4| < 1 for all p > 0. Now we consider

|λ1| = |λ2| =
2
√

2p

1 +
√

1 + 4p
.

If the equilibrium point of system (2.1) is locally asymptotically stable, then all
roots of characteristic equation must lie the unit disk. Therefore, we must show
that |λ1| , |λ2| < 1. Hence

|λ1| = |λ2| =
2
√

2p

1 +
√

1 + 4p
< 1.

Thus, we have 2
√

2p < 1 +
√

1 + 4p. From this, we obtain that p < 2. The proofs
of other cases can be obtained in a similar way. �

3. An oscillation result of solutions of system (2.1)

In this here, we investigate the oscillation behaviour of solutions of system(2.1).

Theorem 3.1. Let {(tn, zn)} be a positive solution of system (2.1) and p > 0.
Then for any n ≥ 0 the following cases are true.

i.: If tn+1, zn < t̄ = z̄ < tn, zn+1 then

(tn+2k−1)
∞
k=1 < t̄ < (tn+2k)

∞
k=1 ,

(zn+2k)
∞
k=1 < z̄ < (zn+2k−1)

∞
k=1 .

ii.: If tn, zn+1 < t̄ = z̄ < tn+1, zn then

(tn+2k)
∞
k=1 < t̄ < (tn+2k−1)

∞
k=1 ,

(zn+2k−1)
∞
k=1 < z̄ < (zn+2k)

∞
k=1 .

Proof. Firstly we consider case (i). Assume that tn+1, zn < t̄ = z̄ < tn, zn+1. Then
we obtain that

tn+2 = 1 + p
zn+1

z2
n

> 1 + p
z̄

z̄2
= z̄ = t̄,

zn+2 = 1 + p
tn+1

t2n
< 1 + p

t̄

t̄2
= t̄ = z̄,

tn+3 < t̄, zn+3 > z̄, tn+4 > t̄, zn+4 < z̄.

Therefore we have by using induction

tn, tn+2, ..., tn+2k, ... < t̄ < tn+1, tn+3, ..., tn+2k−1, ...,

zn+1, zn+3, ..., zn+2k−1, ... < z̄ < zn, zn+2, ..., zn+2k, ....

Thus the proof of (i) is completed as desired. The proof of (ii) is similar to proof
of (i). �

4. Boundedness of system (2.1)

Lemma 4.1. Let {(tn, zn)} be a positive solution of system (2.1) and p > 0. Then
tn > 1 and zn > 1 for n ≥ 1.
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Proof. Let {(tn, zn)} be a positive solution of system (2.1). Then we have from
system (2.1):

t1 = 1 + p
z0

z2
−1

> 1,

z1 = 1 + p
t0
t2−1

> 1.

Therefore, we obtain by induction

tn+1 = 1 + p
zn
z2
n−1

> 1,

zn+1 = 1 + p
tn
t2n−1

> 1.

So, the proof of lemma is completed. �

Theorem 4.2. If 0 < p < 1 then every solution of system (2.1) is bounded.

Proof. Firstly we have from system (2.1) tn > 1 and zn > 1 for n ≥ 1 and p > 0.
Moreover, every solution of system (2.1) satisfies

(4.1) tn+1 ≤ 1 + p+ p2tn−1, n ≥ 1,

which due to Theorem 1.2, means that tn ≤ qn, n = 0, 1, ..., where {un} satisfy

(4.2) un+1 = 1 + p+ p2un−1, n ≥ 1,

such that
us = ts, us+1 = ts+1, s ∈ {−1, 0, 1, ...} , n ≥ s.

Hence the solution un of the difference equation (4.2) is

(4.3) un =
1

1− p + pnC1 + (−p)n C2.

Moreover, we have from (4.2)

un+1 = 1 + p+ p2un−1 ⇒ λ2 − p2 = 0⇒ λ1,2 = ±p.

From this, the homogeneous solution of difference equation (4.2) is

uh = pnC1 + (−p)n C2.

In additon, from (4.2), the equilibrium solution of difference equation (4.2) is

ū = 1 + p+ p2ū⇒ ū =
1

1− p .

Additionally, relations (4.1) and (4.3) imply that

tn+1 − un+1 ≤ p2 (tn−1 − us−1) , n > s, p ∈ (0, 1) .

Therefore we have

(4.4) tn ≤ un, n > s.

Hence, we obtain from (4.3), (4.4) and Lemma 4.1,

1 < tn ≤
1

1− p + pnC1 + (−p)n C2 = M1,
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where

C1 =
1

2p

(
pt0 + t1 −

1 + p

1− p

)
,

C2 =
1

2p
(pt0 − t1 + 1) .

Similarly we can write that

1 < zn ≤
1

1− p + pnC3 + (−p)n C4 = M2,

where

C3 =
1

2p

(
pz0 + z1 −

1 + p

1− p

)
,

C4 =
1

2p
(pz0 − z1 + 1) .

�

5. Convergence results of solutions of system (2.1)

Theorem 5.1. If tn ≥ t̄ and zn ≥ z̄ (resp., tn ≤ t̄ and zn ≤ z̄) for n ≥ s and
s ∈ {−1, 0, ...} then the solution {(tn, zn)} of system (2.1) tends to equilibrium point
(t̄, z̄) as n→∞.

Proof. Let {(tn, zn)} be a positive solution of system (2.1) such that

(5.1) tn ≥ t̄, zn ≥ z̄, n ≥ s,
where s ∈ {−1, 0, ...}. Hence, we obtain from (5.1), system (2.1) and Lemma 4.1:

(5.2) tn+1 ≤ 1 + p+ p2tn−1.

Now we set

(5.3) un+1 = 1 + p+ p2un−1,

such that

(5.4) us = ts, us+1 = ts+1, s ∈ {−1, 0, ...} , n ≥ s.
Therefore, we get from the solution of the difference equation (5.3):

(5.5) un =
1

1− p + pnC1 + (−p)n C2

where C1, C2 depent on ts, ts+1. Moreover, we have from (5.2) and (5.3):

(5.6) tn+1 − us+1 ≤ p2 (tn−1 − us−1) , n > s.

Thus we obtain from (5.4), (5.6) and by induction

(5.7) tn ≤ un, n ≥ s.
From (5.1), (5.5) and (5.7), we obtain that

lim
n→∞

tn = t̄.

Then we similarly obtain that lim
n→∞

zn = z̄. The proof of the other case of this

theorem is similar to this case, so we leave it to readers. �
Theorem 5.2. Assume that 0 < p < 1

2 . Then the positive equilibrium point of
system (2.1) is globally asymptotically stable.
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Proof. We have from Theorem 4.2,

1 < l1 = lim
n→∞

tn ≤M1,

1 < l2 = lim
n→∞

zn ≤M2,

1 < U1 = lim
n→∞

tn ≤M1,

1 < U2 = lim
n→∞

zn ≤M2.

By system (2.1), we can write

U1 ≤ 1 + p
U2

l22
, l1 ≥ 1 + p

l2
U2

2

,

U2 ≤ 1 + p
U1

l21
, l2 ≥ 1 + p

l1
U2

1

.

Hence we have

U1 + p
l1
U1

≤ U1l2 ≤ l2 + p
U2

l2
,

U2 + p
l2
U2

≤ U2l1 ≤ l1 + p
U1

l1
.

Therefore we obtain that

U1 + p
l1
U1

+ U2 + p
l2
U2

≤ l2 + p
U2

l2
+ l1 + p

U1

l1
,

U1 + p
l1
U1

+ U2 + p
l2
U2
− l2 − p

U2

l2
− l1 − p

U1

l1
≤ 0,

(U1 − l1)

(
1− p

(
1

l1
+

1

U1

))
+ (U2 − l2)

(
1− p

(
1

l2
+

1

U2

))
≤ 0.

In this here if p ∈
(
0, 1

2

)
then

1− p
(

1

l1
+

1

U1

)
> 0,

1− p
(

1

l2
+

1

U2

)
> 0.

Thus, we get that
U1 − l1 = 0, U2 − l2 = 0.

So, U1 = l1 and U2 = l2. The proof is completed as desired. �

6. Rate of convergence of system (2.1)

Now we study the rate of convergence of system (2.1). Hence, we consider the
following system:

(6.1) En+1 = (A+B (n))En,

where En is a k−dimensional vector, A ∈ Ck×k is a constant matrix, and B : Z+ →
Ck×k is a matrix function satisfying

(6.2) ‖B(n)‖ → 0,

as n → ∞, where ‖·‖ denotes any matrix norm that is associated with the vector
norm

‖(x, y)‖ =
√
x2 + y2.
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Theorem 6.1 (Perron’s Theorem, [19]). Assume that condition (6.2) holds. If En
is a solution of (6.1), then either En = 0 for all n→∞, or

lim
n→∞

n
√
‖En‖,

or

lim
n→∞

‖En+1‖
‖En‖

,

exists and is equal to modulus of one of the eigenvalues of matrix A.

Theorem 6.2. Suppose that 0 < p < 1
2 and {(tn, zn)} be a solution of the system

(2.1) such that lim
n→∞

tn = t̄ and lim
n→∞

zn = z̄. Then the error vector

En =


e1
n

e1
n−1

e2
n

e2
n−1

 =


tn − t̄
tn−1 − t̄
zn − z̄
zn−1 − z̄


of every solution of system (2.1) satisfies both of the following asymptotic relations:

lim
n→∞

n
√
‖En‖ = |λ1,2,3,4FJ(t̄, z̄)| ,

lim
n→∞

‖En+1‖
‖En‖

= |λ1,2,3,4FJ(t̄, z̄)| ,

where λ1,2,3,4FJ(t̄, z̄) are the characteristic roots of the Jacobian matrix FJ(t̄, z̄).

Proof. To find the error terms, we set

tn+1 − t̄ =

1∑
i=0

αi (tn−i − t̄) +

1∑
i=0

βi (zn−i − z̄) ,

zn+1 − z̄ =

1∑
i=0

γi (tn−i − t̄) +

1∑
i=0

δi (zn−i − z̄) ,

and e1
n = tn − t̄, e2

n = zn − z̄. Thus we have

e1
n+1 =

1∑
i=0

αie
1
n−i +

1∑
i=0

βie
2
n−i,

e2
n+1 =

1∑
i=0

γie
1
n−i +

1∑
i=0

δie
2
n−i,

where

α0 = α1 = 0,

β0 =
p

z2
n−1

, β1 =
−p (z̄ + zn−1)

z̄z2
n−1

,

γ0 =
p

t2n−1

, γ1 =
−p (t̄+ tn−1)

t̄t2n−1

,

δ0 = δ1 = 0.
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Now we take the limits

lim
n→∞

α0 = lim
n→∞

α1 = 0,

lim
n→∞

β0 =
p

z̄2
, lim
n→∞

β1 =
−2p

z̄2
,

lim
n→∞

γ0 =
p

t̄2
, lim
n→∞

γ1 =
−2p

t̄2
,

lim
n→∞

δ0 = lim
n→∞

δ1 = 0.

Hence

β0 =
p

z̄2
+ an, β1 =

−2p

z̄2
+ bn,

γ0 =
p

t̄2
+ cn, γ1 =

−2p

t̄2
+ dn,

where an → 0, bn → 0, cn → 0, dn → 0 as n→∞. Therefore, we obtain the system
of the form (6.1)

En+1 = (A+B (n))En

where

A =


0 0 p

z̄2
−2p
z̄2

1 0 0 0
p
t̄2

−2p
t̄2 0 0

0 0 1 0

 ,

B(n) =


0 0 an bn
1 0 0 0
cn dn 0 0
0 0 1 0

 ,

and ‖B(n)‖ → 0 as n → ∞. So, the limiting system of error terms about the
equilibrium point (t̄, z̄) can be written as follows:

e1
n+1

e1
n

e2
n+1

e2
n

 =


0 0 p

z̄2
−2p
z̄2

1 0 0 0
p
t̄2

−2p
t̄2 0 0

0 0 1 0




e1
n

e1
n−1

e2
n

e2
n−1

 ,

which is same as linearized system of system (2.1) about equilibrium point (t̄, z̄). �

7. Numerical simulations

Example 7.1. We consider system (2.1) for p = 0.43. With the initial values
t−1 = 1, t0 = 1.2, z−1 = 3 and z0 = 0.95, positive equilibrium point of system
(2.1) is globally asymptotically stable. Figure 1 and Figure 2 verify our theoretical
results.

Example 7.2. We consider system (2.1) for p = 2.2. With the initial values
t−1 = 2.08, t0 = 2.02, z−1 = 2.03 and z0 = 2.08, solutions of system (2.1) oscillate
about positive equilibrium point (t̄, z̄) = (2.065 2, 2.065 2). Figure 3 verifies our
theoretical results.
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Figure 1. Plot of tn.

Figure 2. Plot of zn.

Figure 3. Plot of system (2.1)

8. Conclusions

This proposed study is related to convergence results of a system of second order
difference equations. Firstly we investigate the unique positive equilibrium point
of system (2.1). Then we analyse the bounded solutions of system (2.1). We also
study the oscillation of solutions of system. Moreover we especially focus on the
convergence results of solutions of system. According to our results, if 0 < p < 1

2
then the positive equilibrium point of system (2.1) is globally asymptotically stable.
After this we study the rate of convergence of solutions of system (2.1). In addition
to this we present two numerical simulations to verify our theoretical results.
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