
Journal of Computational and Applied Mathematics () –

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

On the algebraic construction of cryptographically good
32 × 32 binary linear transformations
Muharrem Tolga Sakallı a,∗, Bora Aslan b

a Computer Engineering Department, Trakya University, Edirne, Turkey
b Computer Programming Department, Kırklareli University, Kırklareli, Turkey

h i g h l i g h t s

• A new algebraic method to construct cryptographically good 32 × 32 binary matrices.
• How to construct 32 × 32 involutory binary matrices of branch number 12.
• To construct non-involutory binary matrices of branch number 11 with a fixed point.

a r t i c l e i n f o

Article history:
Received 25 November 2012
Received in revised form 5 May 2013

Keywords:
Cryptography
Block cipher
Binary linear transformation
Branch number
Fixed points
Finite fields

a b s t r a c t

Binary linear transformations (also called binary matrices) have matrix representations
over GF(2). Binary matrices are used as diffusion layers in block ciphers such as Camel-
lia and ARIA. Also, the 8 × 8 and 16 × 16 binary matrices used in Camellia and ARIA,
respectively, have the maximum branch number and therefore are called Maximum Dis-
tance Binary Linear (MDBL) codes. In the present study, a new algebraic method to con-
struct cryptographically good 32× 32 binary linear transformations, which can be used to
transform a 256-bit input block to a 256-bit output block, is proposed. When construct-
ing these binary matrices, the two cryptographic properties; the branch number and the
number of fixed points are considered. The method proposed is based on 8 × 8 involutory
and non-involutory Finite Field Hadamard (FFHadamard) matrices with the elements of
GF(24). How to construct 32 × 32 involutory binary matrices of branch number 12, and
non-involutory binary matrices of branch number 11 with one fixed point, are described.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The two important structures in block cipher design are Feistel Networks and Substitution Permutation Networks (SPNs).
An SPN structure consists of a substitution layer followed by a linear transformation, which is also called the diffusion layer.
The diffusion layer is to ensure that all the output bits depend on all the input bits after a few rounds, while the substitution
layer or the nonlinear layer ensures that this dependency is complex and nonlinear in nature [1]. Most diffusion layers are
linear transformations having matrix representations over GF(2m) or GF(2). Binary matrices, which have matrix represen-
tations over GF(2), are also called binary linear transformations.

Binary matrices are used as diffusion layers of block ciphers such as Camellia [2] and ARIA [3]. Also, the binary matrices
used in Camellia and ARIA have the maximum branch number and therefore are called Maximum Distance Binary Linear
(MDBL) codes [1]. The maximum branch number of 8× 8 and 16× 16 binary matrices is 5 and 8 respectively, i.e., the input
difference and the corresponding output difference across these matrices have total weight 5 and 8, respectively. However,

∗ Corresponding author. Tel.: +90 5052504681; fax: +90 2842261225.
E-mail addresses: tolga@trakya.edu.tr, mtolgasakalli@hotmail.com (M.T. Sakallı), bora.aslan@kirklareli.edu.tr (B. Aslan).

0377-0427/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cam.2013.05.008

http://dx.doi.org/10.1016/j.cam.2013.05.008
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:tolga@trakya.edu.tr
mailto:mtolgasakalli@hotmail.com
mailto:bora.aslan@kirklareli.edu.tr
http://dx.doi.org/10.1016/j.cam.2013.05.008

2 M.T. Sakallı, B. Aslan / Journal of Computational and Applied Mathematics () –

themaximum branch number of 32×32 binarymatrices is regarded as 12, which has not been proven yet [4]. Moreover, an
advantage of using such binary matrices in the design of block ciphers compared with Maximum Distance Separable (MDS)
codes is the implementation phase where only XOR operations are needed, while MDS matrices may need XOR operations,
table look-ups, and xtime calls [5].

The two important techniques of measuring diffusion are the branch number [6] and the number of fixed points [7],
respectively. The branch number of a diffusion layer, which represents diffusion rate andmeasures security against linear [8]
and differential cryptanalysis [9], denotes the minimum number of active S-boxes for any two consecutive rounds. The
secondmeasure, the number of fixed points, provides an indication of howwell the linear transformation effectively changes
the value of the input blockwhen producing the output block. The basis of the idea is that there is no diffusion at these points
since the input blocks are left intact by the linear transformation.

Koo et al. [4] proposed amethod to construct a 32×32 binarymatrix of branch number 10,which can be used to transform
a 256-bit input to a 256-bit output. It seems that they aimed to use arbitrary 32 parallel S-boxes before this binary matrix,
which is not involutory. In a previous study [10], we presented a new algebraic construction method to generate 8 × 8 and
16× 16 binary matrices of maximum branch number. The present study concentrates on the two cryptographic properties;
the branch number and the number of fixed points. A new algebraic construction method based on 8 × 8 involutory and
non-involutory Finite Field Hadamard (FFHadamard) matrices with the elements of GF(24) to generate 32 × 32 involutory
binary matrices of branch number 12, and non-involutory binary matrices of branch number 11 with one fixed point is
presented. Also, the constructed matrices have suitable implementation properties on 8-bit, 32-bit and 64-bit processors.

2. Mathematical background

A finite field is a commutative ring (with unity) in which all nonzero elements have amultiplicative inverse [5]. The finite
field GF(2m) is the extension field of GF(2) and has 2m elements where m is a nonzero positive integer. Also, all nonzero
elements of GF(2m) can be uniquely represented with a polynomial degree up to m − 1 with coefficients in GF(2). Hence,
polynomial or standard basis representation of an element in GF(2m) can be written as

um−1xm−1
+ um−2xm−2

+ · · · + u1x + u0 (1)

where ui ∈ GF(2) and x denotes the primitive element used to construct the finite field GF(2m). In the finite field GF(2m),
the addition (and subtraction) of two field elements is defined as polynomial addition. Thus, it is executed by modulo 2
addition (XOR operation) for every coefficient. On the other hand, multiplication of two field elements in GF(2m) is defined
as a polynomial multiplicationmodulo p(x), which is an irreducible polynomial of degreem. The present study concentrates
on the finite field GF(24), where the irreducible polynomial over GF(2) is x4 +x+1. A compact representation of an element
u ∈ GF(24) uses hexadecimal digits (denotedwith subscript h), expressing the coefficients of the polynomial representation.
For example, x3 + x = Ah is in the finite field GF(24). Information on finite fields is described elsewhere [11,12].

The following example denotes how a 4 × 4 binary matrix corresponds to a given element of GF(24).

Example 1. Let GF(24) be defined by the primitive polynomial p(x) = x4 + x + 1. Let x be a root of p(x). Then, for any
u ∈ GF(24), we can write u = u3x3 + u2x2 + u1x+ u0, where ui ∈ GF(2) and {x3, x2, x1, x0} =


x3, x2, x1, 1


is a polynomial

basis of GF(24) over GF(2). A finite fieldmultiplication (denotedwith symbol⊗) of 2h or x by any u ∈ GF(24) can be given as

(2h ⊗ u) mod p(x) = (x ⊗ u) mod p(x)
= (u3x4 + u2x3 + u1x2 + u0x) mod p(x)
= u2x3 + u1x2 + (u3 + u0)x + u3,

which corresponds to the 4 × 4 binary matrix
u′

0

u′

1

u′

2

u′

3

 =

0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

 ·

u0
u1
u2
u3

 .

8 × 8 involutory or non-involutory matrices with the elements of GF(24) can be transformed to 32 × 32 binary matrices
by substituting the elements of GF(24) with their corresponding 4 × 4 binary matrices. Generally, in the literature, MDS
matrices used as diffusion layers are constructed by two types of matrices: circulant [6,13] and FFHadamard matrices [14].
In the present study, 8 × 8 FFHadamard matrices with distinct elements of GF(24), which may have high branch numbers
7 or 8 (not MDS matrices), are used to construct cryptographically good 32 × 32 binary matrices since involutory binary
matrices can easily be obtained by FFHadamard matrices as given in Lemma 2.

M.T. Sakallı, B. Aslan / Journal of Computational and Applied Mathematics () – 3

Definition 1. An 8 × 8 Finite Field Hadamard matrix with elements of GF(2m) can be represented as follows:

H = had(a0, a1, a2, a3, a4, a5, a6, a7) =



a0 a1 a2 a3 a4 a5 a6 a7
a1 a0 a3 a2 a5 a4 a7 a6
a2 a3 a0 a1 a6 a7 a4 a5
a3 a2 a1 a0 a7 a6 a5 a4
a4 a5 a6 a7 a0 a1 a2 a3
a5 a4 a7 a6 a1 a0 a3 a2
a6 a7 a4 a5 a2 a3 a0 a1
a7 a6 a5 a4 a3 a2 a1 a0


.

The following lemma is well-known and stated for convenience.

Lemma 1. Let a0, a1, . . . , at be elements of GF(2m). Then

(a0 + a1 + · · · + at)2
k
= a2

k

0 + a2
k

1 + · · · + a2
k

t (2)

for k = 1, 2, 3,

Lemma 2. Let A = had(a0, a1, a2, a3, a4, a5, a6, a7) be an 8 × 8 FFHadamard matrix with the elements of GF(2m). Then, A
is the involutory matrix if and only if

7
i=0 ai = 1, where the summation involves elements of GF(2m) and the addition is the

addition of polynomials with binary coefficients. Binary coefficients are added modulo 2.

Proof. As shown in Eq. (3), the identity matrix can be obtained if
7

i=0 a
2
i = 1:

A2
=



a0 a1 a2 a3 a4 a5 a6 a7
a1 a0 a3 a2 a5 a4 a7 a6
a2 a3 a0 a1 a6 a7 a4 a5
a3 a2 a1 a0 a7 a6 a5 a4
a4 a5 a6 a7 a0 a1 a2 a3
a5 a4 a7 a6 a1 a0 a3 a2
a6 a7 a4 a5 a2 a3 a0 a1
a7 a6 a5 a4 a3 a2 a1 a0


·



a0 a1 a2 a3 a4 a5 a6 a7
a1 a0 a3 a2 a5 a4 a7 a6
a2 a3 a0 a1 a6 a7 a4 a5
a3 a2 a1 a0 a7 a6 a5 a4
a4 a5 a6 a7 a0 a1 a2 a3
a5 a4 a7 a6 a1 a0 a3 a2
a6 a7 a4 a5 a2 a3 a0 a1
a7 a6 a5 a4 a3 a2 a1 a0



=



7
i=0

a2i 0 0 0 0 0 0 0

0
7

i=0

a2i 0 0 0 0 0 0

0 0
7

i=0

a2i 0 0 0 0 0

0 0 0
7

i=0

a2i 0 0 0 0

0 0 0 0
7

i=0

a2i 0 0 0

0 0 0 0 0
7

i=0

a2i 0 0

0 0 0 0 0 0
7

i=0

a2i 0

0 0 0 0 0 0 0
7

i=0

a2i



. (3)

Using Lemma 1, if
7

i=0 a
2
i = 1, then

7
i=0 ai = 1. Since A is unitary (A−1

= A) and symmetric (A = AT), matrix A is
involutory. �

Definition 2 ([15]). Two n × n binary matrices A, B are permutation homomorphic to each other if there exists a row
permutation ρ and a column permutation γ satisfying

ρ(γ (A)) = γ (ρ(A)) = B. (4)

4 M.T. Sakallı, B. Aslan / Journal of Computational and Applied Mathematics () –

Lemma 3 ([15]). If two binary matrices A, B are permutation homomorphic to each other, then A, B are of the same branch
number.

By Lemma 3, the branch number is the same for any row or column permutation, thus many matrices can be generated
by using a binary matrix of maximum branch number. In the present study, two special permutations are used:

(1-) to rotate cyclically l bits, where l ∈ {1, . . . , n − 1}, to the right of all rows of an n × n binary matrix,
(2-) to rotate cyclically l bits, where l ∈ {1, . . . , n − 1}, to the downwards of all columns of an n × n binary matrix.

Note that these special permutations satisfy commutativity requirement in Eq. (4). More binary matrices of the same
branch number but with different number of fixed points can be generated by applying special permutations 1 or 2 to any
binary matrix. On the other hand, more binary matrices of the same branch number with the same number of fixed points
can be generated when simultaneous cyclic rotations of 1 and 2 with the same number of l bits are applied to any binary
matrix. Note that these two characteristics related with the number of fixed points were observed experimentally. Suppose
a 32 × 32 binary matrix of branch number 11 with one fixed point. Then, 31 more binary matrices of branch number 11
with one fixed point can be generated by applying special permutations 1 and 2 together with the same number of l bits,
where l ∈ {1, . . . , 31}.

It is stated that if the number of fixed points in a linear transformation greatly exceed the expected number for a random
linear transformation, then this is an indication of poor diffusion of the linear transformation since the bits in these blocks are
left intactwhenproducing the output blocks [7]. Note also that the expected number of fixed points in a randompermutation
is one [7]. Consider an input block to a linear transformation A formed bym-bit values in the field GF(2m). Let A be an n× n
matrix A = (aij)n×n where ai,j ∈ GF(2) or ai,j ∈ GF(2m) and let I denote the n × n identity matrix. Then, the set of all fixed
points for that linear transformation can be obtained by solving the following equation

(A + I) · xT = 0 (5)

where 0 is the all-zero vector of length n. Hence, the number of fixed points can be given as [7]

FA = 2m(n−rank(A+I)). (6)

Therefore, it is clear that the linear transformation A has the lower number of fixed points if the matrix (A + I) has bigger
rank (Eq. (6)). For instance, the 16×16 involutory binary matrix of the ARIA has 272 fixed points since the rank of thematrix
(AARIA + I) is 7.

In the present study, an SPN structure consisting of a number of rounds of the same 32 8-bit S-box connected by a
32 × 32 binary matrix is considered. Fig. 1 shows one round function of an assumed block cipher. The S-box considered
in this structure has the same cryptographic properties with that of the AES (Advanced Encryption Standard) [6,13]. The
definitions below are given to show the resistance against differential cryptanalysis and linear cryptanalysis of an assumed
block cipher with a 256-bit block and a 256-bit key size. It should be noted that round keys are assumed to be independent
and random uniform, thus the number of active S-boxes is not affected by the key addition layer. In the present study,
S-boxes are assumed to be bijective mappings defined on Zm

2 .

Definition 3 ([16]). A differentially active S-box is defined as an S-box given a nonzero input difference, and a linearly active
S-box is defined as an S-box given a nonzero output mask.

Definition 4 ([16]). The branch number of a diffusion layer is the minimum number of active S-boxes in the 2-round SPN.

Definition 5. The Hamming weight of a code word c is the number of nonzero components in c and denoted by wt(c).

Definition 6 ([6]). The differential branch number of an n × nmatrix A : ({0, 1}m)n → ({0, 1}m)n is defined by

βd(A) = min{wt(x) + wt(A · xT)|x ∈ ({0, 1}m)n, x ≠ 0} (7)

In applications, n represents the number of S-boxes in a diffusion layer A in the form of matrix A and the size of each
input and output of each S-box is m-bit. On the other hand, the linear branch number of an n × n matrix A is related with
the transposition of the matrix A (AT) as given in Definition 7 [6]. In the present study, 32 × 32 binary matrices having the
same differential and linear branch numbers are considered. That means branch numbers of 32 × 32 binary matrices and
the transpose of them are equal.

Definition 7 ([6]). The linear branch number of an n × nmatrix A is defined by

βl(A) = min{wt(x) + wt(AT
· xT)|x ∈ ({0, 1}m)n, x ≠ 0} (8)

M.T. Sakallı, B. Aslan / Journal of Computational and Applied Mathematics () – 5

Fig. 1. One round function of an assumed block cipher.

Definition 8 ([16]). Let S : Zm
2 → Zm

2 be an S-box. For any given a, b, Γa, Γb ∈ Zm
2 , the differential and linear probability for

the S-box are defined as

DPS(a, b) =
#{x ∈ Zm

2 |S(x) ⊕ S(x ⊕ a) = b}
2m

(9)

LPS(Γa, Γb) =


#{x ∈ Zm

2 |Γa • x = Γb • S(x)}
2m−1

− 1
2

(10)

where x • y denotes the parity (0 or 1) of the bitwise product of x and y.

The a and b are called the input and output difference, respectively, for the S-box. In addition, the Γa and Γb are called the
input mask and output mask, respectively, for the S-box.

Definition 9 ([16]). The maximum differential and linear probability of an S-box are defined as

p = max
a≠0,b

DPS(a, b) (11)

q = max
Γa,Γb≠0

LPS(Γa, Γb) (12)

Note that the maximum differential probability (p) and the maximum linear probability (q) of the AES S-box can be
obtained as 2−6 [16].

3. Algebraic construction of cryptographically good 32 × 32 binary linear transformations

The maximum branch number of n × n binary matrices is equal to the maximum distance of binary linear [2n, n] codes.
The exact maximum distance for n × n (n ≤ 18) binary matrices is known since the upper and lower bounds are equal. For
example, the maximum branch number for 8× 8 matrices is 5 since both the upper and the lower bound for these matrices
are 5. However, the lower and upper bounds may or may not be equal for n × n (n > 18) matrices [1]. For example, the
lower bound for 32 × 32 binary matrices is 12 while the upper bound is 16. The method presented herein is successful for
generating 32 × 32 binary matrices of branch number 12 (lower bound) and 32 × 32 binary matrices of branch number 11
(not lower bound) with one fixed point.

FFHadamard matrices are useful for constructing involutory diffusion transformations in the design of block ciphers.
Involutory transformations can make the decryption process the same as the encryption process. Thus the encryption
and decryption can be implemented by the same module and with equal speeds [17]. FFHadamard matrices can also be

6 M.T. Sakallı, B. Aslan / Journal of Computational and Applied Mathematics () –

implemented on 32-bit and 64-bit processors very efficiently. On the other hand, if these matrices are used with distinct
elements in each row, matrices with high branch numbers may be obtained.

In the present study, 8 × 8 FFHadamard matrices with distinct elements of GF(24) except for 0, which are also of
branch numbers 7 or 8, are used in order to construct 32 × 32 involutory binary matrices of branch number 12 and non-
involutory binary matrices of branch number 11. In this way, it is aimed to generate 32 × 32 binary matrices of high
branch numbers and to use 4 × 4 binary matrices as the basis in the implementation on 32-bit and 64-bit processors.
Since 8 × 8 FFHadamard matrices with the distinct elements of GF(24) except for 0 are used,


15
8


= 6435 (400 of these

classes are involutory) different classes are achieved where each class includes 40320 (8!) members corresponding to the
permutations of the elements of a class. Note also that each class with 8 elements is represented with hexadecimal values
in ascending order. In fact, there are two reasons for this classification. The first one is that the Hamming weights of binary
matrices constructed from distinct class elements affecting the number of XOR operations used to implement the binary
matrix may be different from each other. The second one is that the branch number values of binary matrices constructed
from the members of a class may again be different from each other. For example, the binary matrix constructed from
the class representative had(1h, 2h, 5h, 7h, Ah, Bh, Eh, Fh) is of branch number 8 while the binary matrix constructed from
had(1h, 2h, 5h, Bh, 7h, Fh, Ah, Eh), a member of this class, is of branch number 12.

In Example 2, a 32 × 32 involutory binary matrix is constructed from an 8 × 8 involutory matrix A that satisfies four
restrictions simultaneously such that:
(i) The 8 × 8 matrix A should be involutory as given in Lemma 2.
(ii) The 32 × 32 binary matrix, ABinary, transformed from the 8 × 8 involutory matrix A should be of branch number 12.
(iii) The 8 × 8 involutory matrix A should be chosen such that the rank of the (A + I) matrix should be 4, which is in fact

the highest achievable rank (n/2 for an n×n involutory matrix). Since the elements of GF(24) are used to construct the
32 × 32 binary matrix, the rank of the matrix (ABinary + I) becomes 16. Therefore, if it is used as a 256-bit to a 256-bit
linear transformation, where each input element is in GF(28), the binary linear transformation has 2128 fixed points.

(iv) The elements of 8 × 8 matrix A in GF(24) should be chosen such that each row and column of the transformed binary
matrix should have the Hamming weight equal to 15.

Example 2. Let A = had(1h, 2h, 4h, Bh, 6h, Ch, 8h, Fh) be an involutory 8×8 FFHadamardmatrix, which is of branch number
7. It can be transformed into the 32 × 32 binary linear transformation satisfying the restrictions above as follows:

ABinary =



1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1 1
0 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 1 0 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0
0 0 0 1 1 0 0 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 0 1 0 0
1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 0
0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 0 0 0 0 1 1
0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 1 1 0 1 0 0 1
0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 1 0
0 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 1
1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 0 1 0
0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 1 0 1
1 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 1 1 0 0 0 1 1
1 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0
0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 0 1 0 1 1 0 1
1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1 0
0 0 1 1 0 1 1 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1
1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1
1 1 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1
0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0
0 1 1 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 0 1 0
0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1
1 0 1 0 1 1 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1
1 1 0 1 0 1 1 0 1 1 1 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0
0 1 0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1
0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1
0 0 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0
1 0 0 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0
1 1 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0
1 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0
1 1 0 0 0 0 1 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 0
1 1 1 0 1 0 0 1 1 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1



.

M.T. Sakallı, B. Aslan / Journal of Computational and Applied Mathematics () – 7

In Example 3, a 32×32 binarymatrix from an 8×8 non-involutorymatrix B that satisfies four restrictions simultaneously
is constructed such that:

(i) The 8 × 8 matrix B should be nonsingular.
(ii) The 32 × 32 binary matrix, BBinary, transformed from the 8 × 8 matrix B should be of branch number 11.
(iii) The 8 × 8 matrix B should be chosen such that the rank of the (B + I) matrix should be 8. Since the elements of GF(24)

are used to construct the 32 × 32 binary matrix, the rank of the matrix (BBinary + I) becomes 32. Therefore, the binary
matrix has one fixed point, which is all-zero input (0, 0, 0, . . . , 0).

(iv) TheHammingweight of the binarymatrix,which impacts the needed number of XOR operations in the implementation,
should be the lowest one.

Example 3. Let B = had(1h, 2h, 4h, 8h, 9h, Bh, Ch,Dh) be a non-involutory 8 × 8 FFHadamard matrix, which is of branch
number 7. It can be transformed into the 32 × 32 binary linear transformation satisfying the restrictions above as follows:

BBinary =



1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 0
0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0
1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 0 1 0 1 0 1
0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 0 1 0
0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 1 0 0 1 1 0 1
0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 1 1 0 0 1 1 0 1
0 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 1
1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1
0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 0 0 1 0 1 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 1 1 0 0
0 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0
0 0 1 1 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1
1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0
1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0
0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1
1 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
1 0 1 1 0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1
0 1 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 1
1 0 1 0 1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 0
0 1 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1
0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1
1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0
1 1 0 1 1 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0
1 1 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0
1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 0 0 1 0
1 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1



.

In a straight coding on an 8-bit processor, the binary matrices given in Examples 2 and 3 require 448 and 392 byte
XORs, respectively, for the implementation when input elements to the binary matrices are considered as byte values. The
total number of byte XORs can be reduced to 328 (Appendix A) and 320, respectively, by adding 8 more variables to the
implementation for both. It should also be noted that the inverse of the 32 × 32 binary matrix in Example 3 is constructed
from the 8 × 8 matrix had(8h, 3h, 6h, Ch, 4h, 7h, Ah, 2h) and is also of branch number 11. It requires 528 byte XORs in a
straight coding on an 8-bit processor. But, the total number of byte XORs can be reduced to 363 by adding 12more variables
to the implementation. On the other hand, the advantage of the FFHadamard form of the 4 × 4 binary matrices can be used
to implement these matrices on a 32-bit and a 64-bit processor.

4. Security assessment of an assumed block cipher with a 256-bit block and key size against differential and linear
cryptanalysis

Consider a 2r-round SPN where a round consists of an S-box layer followed by the 32 × 32 involutory binary matrix in
Example 2 as a diffusion layer (Fig. 1). Also, consider the S-box layer consisting of the same 32 8-bit S-box which has the

8 M.T. Sakallı, B. Aslan / Journal of Computational and Applied Mathematics () –

maximum differential probability and the maximum linear probability 2−6, which is the same value with the AES S-box.
Then, the maximum probabilities of the differential (pD) and linear characteristic (qL) for 2r-round SPN are as follows:

p2rD ≤ (2−6)(r×βA), q2rL ≤ (2−6)(r×βA)

where βA denotes the branch number of a diffusion layer A. The maximum differential and linear probabilities of 2-round
SPN is bounded by (2−6)(1×12)

= 2−72 because the branch number of the involutory binary matrix is 12 and therefore the
number of minimum active S-box is 12 in the 2-round SPN. In this context, the minimum number of rounds needed for
the block cipher with 256-bit key size to be secure against differential and linear cryptanalysis is 8, because the maximum
differential and linear probabilities of 8-round SPN is bounded by (2−6)(4×12)

= 2−288
≤ 2−256. Notice that if the 512-bit key

is used, then the minimum number of rounds to be secure against differential and linear cryptanalysis will be 16, because
the maximum differential and linear probabilities of 16-round SPN will be bounded by (2−6)(8×12)

= 2−576
≤ 2−512.

In the same manner, if the 32 × 32 non-involutory binary matrix in Example 3 is used as a diffusion layer in the same
structure, theminimumnumber of rounds needed for the block cipher with 256-bit key size to be secure against differential
and linear cryptanalysis will again be 8, because the maximum differential and linear probabilities of 8-round SPN will be
bounded by (2−6)(4×11)

= 2−264
≤ 2−256. Themaximumdifferential and linear probabilities of 12-round SPNwith the same

32 4-bit S-box are given in Remark 1.

Remark 1. If the block cipher with the 32 × 32 involutory binary matrix is assumed with the same 32 4-bit S-box for
which the maximum differential probability and the maximum linear probability are 2−2, then the minimum number of
rounds needed for the block cipher with the 128-bit block and the 128-bit key to be secure against differential and linear
cryptanalysis will be 12. This is because the maximum differential and linear probabilities of 12-round SPNwill be bounded
by (2−2)(6×12)

= 2−144
≤ 2−128.

5. Conclusions

In the present study, a new algebraic construction method for generating 32 × 32 matrices of branch number 12 and
branch number 11,which can be used to transforma256-bit input block to a 256-bit output block, is presented. In Example 2,
an involutory binary matrix of branch number 12 with suitable implementation properties is constructed from a member
of the class had(1h, 2h, 4h, 6h, 8h, Bh, Ch, Fh). After searching for all members of this class, a total of 2688 binary matrices
(members) of branch number 12 were found. A total of 86016 (32 × 2688) involutory binary matrices of branch number
12 can be determined by simultaneous application of special permutations 1 and 2 (Section 2) to these involutory binary
matrices. It should be noted that a non-involutory binarymatrix of branch number 12with reduced fixed points but notwith
one fixed point can be determined by using special permutations 1 or 2 and any involutory binary matrix of branch number
12. Moreover, 8 more classes were determined by searching all classes satisfying the criteria in Example 2. There were some
classes, which did not satisfy criterion (iv) in Example 2. These classes include members, which can be transformed into
the involutory binary matrices of branch number 12. But, these classes have bigger Hamming weights and therefore do not
possess suitable implementation properties.

9 classes satisfying the criteria given in Example 2 were found again after searching for the 8 × 8 matrices with the
elements of GF(24) defined by the irreducible polynomial x4 + x3 + 1. Therefore, these classes include members which can
be transformed into the involutory binary matrices of branch number 12. 8 × 8 matrices with the elements defined by the
irreducible polynomial x4+x3+x2+x+1 to transform into the 32×32 binarymatrices with good cryptographic properties
were not searched in depth.

Finally, it was shown that (Section 4) the given binary matrices (with an 8-bit S-box having the same cryptographic
propertieswith that of AES) for a 256-bit block cipher are resistant against linear and differential cryptanalysis when applied
in a reasonable number of rounds. A further security analysis should be performed to analyze the resistance of the given
binary matrices against other important attacks such as truncated differential cryptanalysis and impossible differential
cryptanalysis. In this context, the existence of an additional linear transformation similar to the ShiftRows transformation
in the AES block cipher can be questioned, if so, it may be used to further improve the assumed block cipher.

Acknowledgments

The authors would like to express their gratitude to the anonymous reviewers for their invaluable suggestions in putting
the present study into its final form. Thanks are also due to Prof. Dr. Vincent Rijmen, Dr. Nicky Mouha and Dr. Orhun Kara
for their invaluable input.

Appendix. 8-bit implementation of the 32 × 32 binary matrix given in Example 2

If the 32 × 32 binary matrix given in Example 2 is implemented into an 8-bit processor, then A is represented by byte
XORs of binary vectors as follows:

A · x = y,

M.T. Sakallı, B. Aslan / Journal of Computational and Applied Mathematics () – 9

where x = (x0, x1, . . . , x31)T , y = (y0, y1, . . . , y31)T with xi, yi ∈ GF(28), i = 0, 1, . . . , 31. Note also that T0, T1, . . . , T7 are
additional variables used to reduce the number of operations to 328 XORs. Then,

T0 = x7 ⊕ x10 ⊕ x13 ⊕ x19 ⊕ x25 ⊕ x30,
T1 = x1 ⊕ x4 ⊕ x14 ⊕ x16 ⊕ x21 ⊕ x26,
T2 = x2 ⊕ x5 ⊕ x15 ⊕ x17 ⊕ x22 ⊕ x27,
T3 = x6 ⊕ x9 ⊕ x12 ⊕ x18 ⊕ x24 ⊕ x29,
T4 = x3 ⊕ x9 ⊕ x14 ⊕ x23 ⊕ x26 ⊕ x29,
T5 = x0 ⊕ x5 ⊕ x10 ⊕ x17 ⊕ x20 ⊕ x30,
T6 = x1 ⊕ x6 ⊕ x11 ⊕ x18 ⊕ x21 ⊕ x31,
T7 = x2 ⊕ x8 ⊕ x13 ⊕ x22 ⊕ x25 ⊕ x28,
y0 = T0 ⊕ x0 ⊕ x12 ⊕ x15 ⊕ x18 ⊕ x21 ⊕ x22 ⊕ x28 ⊕ x29 ⊕ x31,
y1 = T1 ⊕ x7 ⊕ x10 ⊕ x11 ⊕ x12 ⊕ x15 ⊕ x18 ⊕ x23 ⊕ x25 ⊕ x28,
y2 = T2 ⊕ x8 ⊕ x11 ⊕ x13 ⊕ x16 ⊕ x19 ⊕ x20 ⊕ x26 ⊕ x28 ⊕ x29,
y3 = T3 ⊕ x3 ⊕ x14 ⊕ x17 ⊕ x20 ⊕ x21 ⊕ x23 ⊕ x27 ⊕ x28 ⊕ x30,
y4 = T4 ⊕ x4 ⊕ x8 ⊕ x11 ⊕ x17 ⊕ x18 ⊕ x22 ⊕ x24 ⊕ x25 ⊕ x27,
y5 = T5 ⊕ x3 ⊕ x8 ⊕ x11 ⊕ x14 ⊕ x15 ⊕ x19 ⊕ x22 ⊕ x24 ⊕ x29,
y6 = T6 ⊕ x9 ⊕ x12 ⊕ x15 ⊕ x16 ⊕ x20 ⊕ x23 ⊕ x24 ⊕ x25 ⊕ x30,
y7 = T7 ⊕ x7 ⊕ x10 ⊕ x16 ⊕ x17 ⊕ x19 ⊕ x21 ⊕ x24 ⊕ x26 ⊕ x31,
y8 = T2 ⊕ x4 ⊕ x7 ⊕ x8 ⊕ x20 ⊕ x21 ⊕ x23 ⊕ x26 ⊕ x29 ⊕ x30,
y9 = T3 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x7 ⊕ x15 ⊕ x17 ⊕ x20 ⊕ x26 ⊕ x31,
y10 = T0 ⊕ x0 ⊕ x3 ⊕ x5 ⊕ x18 ⊕ x20 ⊕ x21 ⊕ x24 ⊕ x27 ⊕ x28,
y11 = T1 ⊕ x6 ⊕ x11 ⊕ x19 ⊕ x20 ⊕ x22 ⊕ x25 ⊕ x28 ⊕ x29 ⊕ x31,
y12 = T6 ⊕ x0 ⊕ x3 ⊕ x12 ⊕ x16 ⊕ x17 ⊕ x19 ⊕ x25 ⊕ x26 ⊕ x30,
y13 = T7 ⊕ x0 ⊕ x3 ⊕ x6 ⊕ x7 ⊕ x11 ⊕ x16 ⊕ x21 ⊕ x27 ⊕ x30,
y14 = T4 ⊕ x1 ⊕ x4 ⊕ x7 ⊕ x16 ⊕ x17 ⊕ x22 ⊕ x24 ⊕ x28 ⊕ x31,
y15 = T5 ⊕ x2 ⊕ x15 ⊕ x16 ⊕ x18 ⊕ x23 ⊕ x24 ⊕ x25 ⊕ x27 ⊕ x29,
y16 = T4 ⊕ x2 ⊕ x5 ⊕ x6 ⊕ x12 ⊕ x13 ⊕ x15 ⊕ x16 ⊕ x28 ⊕ x31,
y17 = T5 ⊕ x2 ⊕ x7 ⊕ x9 ⊕ x12 ⊕ x23 ⊕ x26 ⊕ x27 ⊕ x28 ⊕ x31,
y18 = T6 ⊕ x0 ⊕ x3 ⊕ x4 ⊕ x10 ⊕ x12 ⊕ x13 ⊕ x24 ⊕ x27 ⊕ x29,
y19 = T7 ⊕ x1 ⊕ x4 ⊕ x5 ⊕ x7 ⊕ x11 ⊕ x12 ⊕ x14 ⊕ x19 ⊕ x30,
y20 = T0 ⊕ x1 ⊕ x2 ⊕ x6 ⊕ x8 ⊕ x9 ⊕ x11 ⊕ x20 ⊕ x24 ⊕ x27,
y21 = T1 ⊕ x3 ⊕ x6 ⊕ x8 ⊕ x13 ⊕ x19 ⊕ x24 ⊕ x27 ⊕ x30 ⊕ x31,
y22 = T2 ⊕ x0 ⊕ x4 ⊕ x7 ⊕ x8 ⊕ x9 ⊕ x14 ⊕ x25 ⊕ x28 ⊕ x31,
y23 = T3 ⊕ x0 ⊕ x1 ⊕ x3 ⊕ x5 ⊕ x8 ⊕ x10 ⊕ x15 ⊕ x23 ⊕ x26,
y24 = T6 ⊕ x4 ⊕ x5 ⊕ x7 ⊕ x10 ⊕ x13 ⊕ x14 ⊕ x20 ⊕ x23 ⊕ x24,
y25 = T7 ⊕ x1 ⊕ x4 ⊕ x10 ⊕ x15 ⊕ x18 ⊕ x19 ⊕ x20 ⊕ x23 ⊕ x31,
y26 = T4 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x8 ⊕ x11 ⊕ x12 ⊕ x16 ⊕ x19 ⊕ x21,
y27 = T5 ⊕ x3 ⊕ x4 ⊕ x6 ⊕ x9 ⊕ x12 ⊕ x13 ⊕ x15 ⊕ x22 ⊕ x27,
y28 = T2 ⊕ x0 ⊕ x1 ⊕ x3 ⊕ x9 ⊕ x10 ⊕ x14 ⊕ x16 ⊕ x19 ⊕ x28,
y29 = T3 ⊕ x0 ⊕ x5 ⊕ x11 ⊕ x14 ⊕ x16 ⊕ x19 ⊕ x22 ⊕ x23 ⊕ x27,
y30 = T0 ⊕ x0 ⊕ x1 ⊕ x6 ⊕ x8 ⊕ x12 ⊕ x15 ⊕ x17 ⊕ x20 ⊕ x23,
y31 = T1 ⊕ x0 ⊕ x2 ⊕ x7 ⊕ x8 ⊕ x9 ⊕ x11 ⊕ x13 ⊕ x18 ⊕ x31.

References

[1] D. Kwon, S.H. Sung, J.H. Song, S. Park, Design of block ciphers and coding theory, Trends in Mathematics 8 (1) (2005) 13–20.
[2] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, T. Tokita, Camellia: a 128-bit block cipher suitable for multiple platforms-design and

analysis, in: Proceedings of Selected Areas in Cryptography, SAC 2000, in: Lecture Notes in Computer Science, vol. 2012, Springer, 2001, pp. 39–56.
[3] D. Kwon, J. Kim, S. Park, S.H. Sung, Y. Sohn, J.H. Song, Y. Yeom, E.-J. Yoon, S. Lee, J. Lee, S. Chee, D. Han, J. Hong, New block cipher: ARIA, in: Proceedings

of International Conference on Information Security and Cryptology, in: Lecture Notes in Computer Science, vol. 2971, Springer, 2004, pp. 432–445.

http://refhub.elsevier.com/S0377-0427(13)00271-9/sbref1
http://refhub.elsevier.com/S0377-0427(13)00271-9/sbref2
http://refhub.elsevier.com/S0377-0427(13)00271-9/sbref3

10 M.T. Sakallı, B. Aslan / Journal of Computational and Applied Mathematics () –

[4] B.W. Koo, H.S. Jang, J.H. Song, On constructing of a 32×32 binarymatrix as a diffusion layer for a 256-bit block cipher, in: Proceedings of International
Conference on Information Security and Cryptology, in: Lecture Notes in Computer Science, vol. 4296, Springer, 2006, pp. 51–64.

[5] J. Nakahara Jr., E. Abrahão, A new involutory MDS matrix for the AES, International Journal of Network Security 9 (2) (2009) 109–116.
[6] J. Daemen, V. Rijmen, The Design of Rijndael, AES—The Advanced Encryption Standard, Springer, 2002.
[7] M.R. Z’aba, Analysis of linear relationships in block ciphers, Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia, 2010.
[8] M. Matsui, Linear cryptanalysis method for DES cipher, in: Proceedings of EUROCRYPT 93, in: Lecture Notes in Computer Science, vol. 765, Springer,

1994, pp. 386–397.
[9] E. Biham, A. Shamir, Differential cryptanalysis of DES-like cryptosystems, in: Proceedings of CRYPTO’90, in: Lecture Notes in Computer Science,

vol. 537, Springer, 1990, pp. 2–21.
[10] B. Aslan, M.T. Sakallı, Algebraic construction of cryptographically good binary linear transformations, Security and Communication Networks (2012).

http://dx.doi.org/10.1002/sec.556.
[11] R.J. McEliece, Finite Fields for Computer Scientists and Engineers, Kluwer Academic Publishers, Dordrecht, 1987.
[12] R. Lidl, H. Niederreiter, Finite Fields, in: Encyclopedia of Mathematics and its Applications, Addison-Wesley, Reading, Massachusetts, 1983.
[13] Advanced Encryption Standard, FIPS 197, US National Institute of Standards and Technology, 2001.
[14] P.S.L.M. Barreto, V. Rijmen, The Khazad legacy-level block cipher, in: Proceedings of First open NESSIE Workshop, 2000.
[15] B.W. Koo, H.S. Jang, J.H. Song, Constructing and cryptanalysis of a 16 × 16 binary matrix as a diffusion layer, in: Proceedings of Information Security

Applications: 4th International Workshop, WISA 2003, in: Lecture Notes in Computer Science, vol. 2908, Springer, 2003, pp. 489–503.
[16] K. Chun, S. Kim, S. Lee, S.H. Sung, S. Yoon, Differential and linear cryptanalysis for 2-round SPNs, Information Processing Letters 87 (2003) 277–282.
[17] M. Sajadieh, M. Dakhilalian, H. Mala, B. Omoomi, On construction of involutory MDS matrices from Vandermonde matrices in GF(2q), Designs, Codes

and Cryptography 64 (3) (2012) 287–308.

http://refhub.elsevier.com/S0377-0427(13)00271-9/sbref4
http://refhub.elsevier.com/S0377-0427(13)00271-9/sbref5
http://refhub.elsevier.com/S0377-0427(13)00271-9/sbref6
http://refhub.elsevier.com/S0377-0427(13)00271-9/sbref8
http://refhub.elsevier.com/S0377-0427(13)00271-9/sbref9
http://dx.doi.org/doi:10.1002/sec.556
http://refhub.elsevier.com/S0377-0427(13)00271-9/sbref11
http://refhub.elsevier.com/S0377-0427(13)00271-9/sbref12
http://refhub.elsevier.com/S0377-0427(13)00271-9/sbref13
http://refhub.elsevier.com/S0377-0427(13)00271-9/sbref15
http://refhub.elsevier.com/S0377-0427(13)00271-9/sbref16
http://refhub.elsevier.com/S0377-0427(13)00271-9/sbref17

	On the algebraic construction of cryptographically good 32×32 binary linear transformations
	Introduction
	Mathematical background
	Algebraic construction of cryptographically good 3 2 × 3 2 binary linear transformations
	Security assessment of an assumed block cipher with a 256-bit block and key size against differential and linear cryptanalysis
	Conclusions
	Acknowledgments
	8-bit implementation of the 3 2 × 3 2 binary matrix given in Example 2
	References

