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Some results on a special type of real quadratic fields

In this paper, we determine the real quadratic fields Q(\/E) coincide with positive square-free integers d

including the continued fraction expansion form of wq = | a0;7,7,...,7,a¢|. Furthermore, we deal with
-1

determining fundamental units and Yokoi’s d-invariants ng and mg in the relation to continued fraction

expansion of wy where £ (d) is a period length of w, for the such type of real quadratic number fields Q(+v/d).

The present paper improve the theory of fundamental unit which generates the unit group of real quadratic

fields and also determine the special form of continued fraction expansion of integral basis element in real

quadratic fields.

Keywords: continued fraction, real quadratic fields, fundamental unit, Yokoi’s invariants, integer sequences,
integer basic element.

1 Introduction

Some relations among i-th approachment of quadratic irrationals were proved by ElezoviA’c in [1] . Jeongho
obtained lower bound for regulator of real quadratic fields by considering quadratic integers with fixed norm
in [2]. In [3], Benamar et al. described polynomials and also gave lower bound of the number of some types
of polynomials. Badziahin and Shallit confirmed the conjecture of Hanna and Wilson by considering specific
type of continued fraction of real numbers and got some results on transcendental numbers in [4]. Zhang and
Yue [5] described some congruences relations between the coffecients of fundamental unit of real quadratic
fields and odd class number. Also, Tomita [6] gave some results on fundamental unit by use of the continued
fraction expansion of integral basis element where period length is equal to 3. Clemens and his co-authors
[7] explored some relationship between continued fraction expansion and infinite series representation for real
numbers. Louboutin [8] obtained significant results on principal or non principal real quadratic fields as well
as significant conditions for principality of continued fraction expansion. Tomita and Kawamoto [9] showed a
relation between real quadratic fields of class number one and minimal type of the simple continued fraction
expansion of certain quadratic irrationals. Both Sasaki [10] and Mollin [11] achieved many useful results on lower
bound of fundamental unit for real quadratic number fields. Williams and Buck [12] got comparision between

period length of v/d and 1+T‘/3. Besides, first author in this paper obtained some special results for different
forms of continued fraction expansion of wy in [13] and [14] where d = 2, 3(mod4) is square-free positive integer.
Also, in [15] she got significant results for varied types of continued fraction expansion of wg where d = 1(mod4)
or d = 2,3(mod4) Yokoi defined ng and mg invariants important for class number problem [16-19]. Readers
unfamiliar fundamental unit and continued fraction expansions are referred to books [11, 20-23].

Throughout this paper, I(d) is the set of all quadratic irrational numbers in Q(v/d) , we say that « in I(d)
is reduced if « > 1 and —1 < o’ < 1 where o/ is the conjugate of @ and denoted by R(d) is the set includes of
all reduced quadratic irrational numbers in I(d). Then, it is well known that any number « in R(d) is purely
periodic in the continued fraction expansion and the denominator of its modular automorphism is equal to

2
t
fundamental unit e; of Q(v/d). Yokoi’s invariants are expressed by mg = H % ” and ng = H —dQ H . it is
d Uy
also well known [[ z ]| represents the floor of z for any number z.
In this paper, we deal with the problem for demonstrating the continued fraction expansions which have
got partial constant elements equal each others and written as 7s (except the last digit of the period) according

to period length for d square-free integer (for d = 1(mod4) or d = 2, 3(mod4)).
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Moreover, we demonstrate the general parametrization of d square-free positive integer and fundamental
unit €4 as well as ty, ug the coefficents of fundamental unit. Additionally, we get fix on Yokoi’s invariants for
such types of real quadratic fields. Then,we give some results on fundamental units, continued fraction expansion
and Yokoi’s invariants with numerical Tables.

2 Preliminaries and Basic Results

In this section, readers can find some basic and important definitions and theorems for using our new results.
Definition 2.1. {7;} is a sequence defined by the following recurrence relation

Ti = TTi—1 + Ti—2
for i > 2 where 7o =0 and 71 = 1.

1
Lemma 2.2. [6]. For a square-free positive integer d congruent to 1 modulo 4, let wy = +

)

ag = [[omegaq ||, wr =ao—1+wq. Then wy ¢ R(d), but wpr € R(d) holds. Moreover for the period

s

I = £(d) of wg, we get wr = [2a0 — 1,a1, ....... sai—1] and wg = [ag, a1, ... ,a;—1,2ag — 1]. Furthermore, let
P, P_
WR = M = [2a0 — 1,a1,....... ,a;—1,wr] be a modular automorphism of wg, then the fundamental
(Qiwr + Qi-1)

unit €4 of @ (\/&) is given by the following formula

td+ud\/g
="y

and
ta = (2a0 — 1).Quay +2Qe(a)—1, ud = Qua)»
where Q; is determined by Qo =0, @1 =1 and Q41 = 0;Q; + Qi—1 (2 > 1).

Lemma 2.3. For a square-free positive integer d congruent to 2,3 modulo 4, let wy = Vd, ag = [[ wq ]|,

wr = ag + wg. Then wy ¢ R(d), but wgr € R(d) holds. Moreover for the period [ = I(d) of wg, we
Pwgr+ P
get wr = [2a9,a1, ... yai—1] and wg = [ag, a1, ... ,ai—1,2ag]. Furthermore, let wr = W =
= [2a9, a1, -...... ,a;—1,wr] be a modular automorphism of wg, then the fundamental unit €4 of @ (\/&) is given
by the following formula:
tq + ud\/g
=7 = (a0 + Vd)Qu(ay + Quay—1)1

and
ta = 2a0.Qua) + 2Qe(a)-1, Ud = 2Qu(a),

where Q; is determined by Qo =0, Q1 =1 and Q1 = a;Q; + Qi—1, (i > 1).
Remark 2.4. Let {1,} be a sequence defined as in Definition 2.1. Then, we state that:

(mod4), n =0 (mod6);
(mod4), mn=1,4,5(mod6);
(mod4), n =2 (mod6);
(mod4), n = 3(mods6),

where n > 0.
8 Main Theorems and Results

In this section, we present our results as follows:
Theorem 3.1. Let d be the square-free positive integer and ¢ be a positive integer holding that ¢ is different
from 0(mod3) and ¢ > 1. We assume that parametrization of d is

(74 (2t +1)7,)?
4

for t > 0 positive integer. In this case, we get following:

d:

+ (2t + Drq) + 1
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(1) If £ = 1(mod6) and t = 1(mod2) positive integer then d = 2(mod4) holds.
(2) If £ = 2(mod6) and t = 0(mod2) positive integer then d = 3(mod4) holds.
(3) If £ = 4(mod6) and t = 0(mod2) positive integer then d = 3(mod4) holds.
(4) If £ = 5(mod6) and t = 0(mod2) positive integer then d = 2(mod4) holds.
In this case, we obtain

% + 1) +7
M;?,?,...,?,(Zt—&-l)n—i—?
2 ———
/—1

Wq =

and ¢ = £(d). Moreover, we have following equations:

2+ 1)1 T
€4 = <( +2 )TZ +;—E—|—Tz_1> + m/&;

tg = (2t + 1)7'42 + 770+ 2701 and ug =27

for €4, tq and ug.
Remark 3.2. Note that d is not integer for £ = 0(mod3). That’s why we assume that ¢ different from 0(mod3).
Proof. We assume that ¢ = 1(mod6) positive odd integer, £ > 1 and t = 1(mod2) positive integer. So, we
can get d = 2(mod4) by substituting the equivalents into the parametrization of d. We can easily obtain the
other cases in a similar way. By using Lemma 2.3 , we put

2t+ D7+ 7 i (2t+1)7‘g+7.

Wr = 9 B 70 T2+ D)+ 7,
-1
so we get
wr = (2t + )70 +7) + 11 (@D s 1
T+ T 7 4+ wp
+ 7+1w1R

By induction, we get
T¢—1WR + Ty—2

wr=(2t+ D1, +7)+ .
= 7 ) TYWR + Te—1

If we rearrange and use the Definition 2.1 into the above equality, we have
wh — (2t + 1)1+ 7)wr — (1 + (2t + 1)74_1) = 0.

This requires that wg = W + V/d since wg > 0. If we consider Lemma 2.3, we get

%+ 1) +7
wy=va= | BV e T T
2 —_———
-1

and ¢ = ¢ (d). This shows that the first part of proof is completed.
Now, we should determine ¢4, t; and ug using Lemma 2.3, we get

Qi=1=1, Q2=0a1.Q1+ Qo= Q2=7T7=y;
Qs=0Qs+ Q1 =T +1="7+1=50="13, Qs="4,...

So, this implies that ¢); = 7; by using mathematical induction for every ¢ > 0. If we substitute these values of
sequence into the e; = W = (ap + \/E)Ql(d) + Qi(a)—1)1 and rearrange, we have

20+ )77 T
€4 = <( +2 )TZ +;+Tz_1> + m/&;
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tg= (2t + 1)1} + 770+ 271 and wuy =27

for €4, tq and ug.So, we complete the proof of Theorem 3.1.
Corollary 3.3. Let d be a square-free positive integer and ¢ be a positive integer holding that £ > 1 different
from 0(mod3). We assume that parametrization of d is

(7—|—Tg)2

d= 1

+ 71 +1

then we obtain d = 2, 3(mod4) and

v
wWq = %;7,7,...,7,Tg+7
———

=1
and ¢ = ¢(d). Besides, we get following equalities

;T
€d = <T2Z + g —|—Te_1> + 70Vd;

ta =77 +Tre+271; and  ug = 27;

1, ife=2;
Md=1 3 if¢>4

for €4, tq, ug and Yokoi’s invariant mg.

Furthermore, we prepare Table 1 where fundamental unit is €4, integral basis element is wy and Yokoi’s
invariant is mq for 2 < £(d) < 11. (In this Table, we will rule out ¢(d) = 4,8, 10 since d is not a square-free
positive integer with these periods. Besides, d is not congruent to 2 or 3 (modulo 4) for £(d) = 7).

Tablel

Square-free positive integers d with 2 <[(d) <11

d E(d) md wq €d
51 2 1 [7;7,14] 504751
1633642 5 3 [1278;7,7,7,7, 2550 3257979+ 25491/1633642
[168868704; 57033277246500097+
28516639237941410 11 3
7,7,7,7,7,7,7,7,7,7,337737408] | +3377374011/28516639237941410

Proof. This corollary is gotten if we substitute ¢ = 0 in Theorem 3.1. Now, we have to prove that

[, ife=2;
Md=9 3 ife>4.

If we put t4 and wug into the my and rearrange, then we obtain

) B e

By using the above equality, we have mg = 1 for ¢ = 2. From the assumption since 7 is increasing we get,

7 20\

4>4.(1++ 21) > 3,988
Te Ty

1, ife=2;

3 iff> 4 which completes the proof

for ¢ > 4. Therefore, we obtain mg = 3 for £ > 4 and we have mq = {

of Corollary 3.3.
Furthermore, Table 1 is gotten as a numerical results of the corollary.
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Corollary 3.4. Let d be the square-free positive integer and ¢ be a positive integer such that ¢ is not congruent
to 0 as for (mod3), ¢ > 1. We suppose that parametrization of d is

(7 + 37’@)2

d= 1

+ 311+ 1

then, we obtain d = 2(mod4) and

T T3+ T
————

£—1

and ¢ = ¢(d). Moreover, we have following equalities:

32 T
€q = (22 + 72 + 7@1) + 7Vd;

ta=37; +Tr¢+270—1 and wug =27

mg = 1 for £ > 7 for ¢4, ty, uq and Yokoi’s invariant my. Besides, we state the following Table 2, where
fundamental unit is €4, integral basis element is wy and Yokoi’s invariant is mg for 2 < £(d) < 13.

Table 2
Square-free positive integers d with {(d) =7 or [(d) = 13
d £(d) | mq wq €d
37996589930 7 1 [194927;7,7,7,7,7,7,389854] 25330586923+-129949+/37996589930
[25826973905; 444688387335182490505+
667032581096785339826 13 1 7,7,...,7,51653947810] +172179826011/667032581096785339826

Proof. Corollary is obtained if we substitute £ = 1 in Theorem 3.1. We should prove that mg =1 for £ > 7.
If we put t4 and wug into the my and rearrange, then we obtain

7 2T -1
2>4.(3++ ‘21) > 1,333
Ty TZ

for ¢ > 7 since 74 is increasing sequence.By using the above equality, we have my = 1 for £ > 7. Also, Table 2 is
given as an illustration of this corollary.

Corollary 3.5. We assume that d and ¢ are defined as in Theorem 3.1. If we choose the parametrization of
d as
(7 + 57‘@)2

d=
4

+ 5711 +1

then d = 2,3(mod4) and

57y +7.

Wy = B N

(AN A TR
—_——

-1
with ¢ = £(d). Also, we have the following equalities:

5t T
o= (T + T )+ eV

tqg =517 + 710+ 2741 and wy =27,
ng =1

for ¢ > 2.
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Additionally, we prepare the Table 3 where fundamental unit is ¢4, integral basis element is wy and and
Yokoi’s invariant is ng for 2 < ¢(d) < 11. (In this table, we rule out both ¢(d) = 10 since d is not a square-free
positive integer in this period and also d is not congruent to 2 or 3 (modulo4) for ¢(d) = 7).

Table 3
Square-free positive integers d with 2 <[(d) <11
d f(d) nd wd €d
447 2 | 1 21,7, 42] 148+7+/447
803067 4 1 [896;7,7,7,1792] 319922+357+/803067
40655162 5 1 [6376;7,7,7,7,12752] 16252781-+2549+/40655162
5380595841067 8 1 [2319611;7,7,7,7,7,7,7,4639222] 2152234959022+927843+/5380595841067
[844343506; | 285166381314969699+
1291 1002 11 1
71291595636088100 7,7, 7,7,7,7,7,7,7,77,1688687012] +3377374011/712915956360881002

Proof. Tt is gotten if we substitute ¢ = 2 in Theorem 3.1. Let’s prove that Yokoi’s d- invariant is ng = 1
for ¢ > 2.
t
We know from H. Yokoi’s references [16-19] that ng = H —‘;
g

" — ti . 57’%4—77’44—27’5_1 1
N I 472 7
d 4

since 7y is increasing and 1 < % + ﬁ + 7'2’5;21 < 1,510 for ¢ > 2. Therefore, we obtain ng = 1 for £ > 2. As
2

H If we substitute t; and ug into ng, then

we get

illustration, we give Table 3.
Theorem 3.6. Let d be a square-free positive integer and £ > 1 be a positive integer.
(i) We suppose
d= (2try +7)? + 8trp_1 +4

for t > 0 positive integer. In this case, we obtain that d = 1(mod4) and

wg = |trg +4;7,7,...,7, 2ty + 7
———

-1
and ¢ = ¢(d). Moreover, in this case it holds
tg = QtTez + 77,4+ 2791 and ug =Ty

tg +ugVd
—
(ii) If £ = 0(mod3) and

for ¢4 =

d=(trg +7)2 +4tr_1 +4
for t > 0 positive odd integer then d = 1(mod4) and

t
Wg= |=Te+47,7,....,7,tT0 + 7
2 ———

-1
and ¢ = {(d). Furthermore, in this case
tg =t} + 710+ 2701 and wg =1y

tq +ugVd

hold for ¢4 = 5
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Remark 3.7. For the case (ii) in Theorem 3.6, it is clear that 74 is odd number if £ is not divided by 3. For
the case (i1), assume that ¢ is not divided by 3. Then we get d is not integer if we put ¢ positive odd integer
into the parametrization of d. Besides, if we consider ¢ is positive even integer, then the parametrization of d
will be the case (i). So, we approve that £ = 0(mod3) and ¢ is positive odd integer in the case (ii).

Proof. (1) 1t is clear that d = 1(mod4) holds since (2t7, +7)? is odd integer for any ¢ > 0 and £ > 1 positive
1+d

2 )

integers. We prove the theorem in a similar to Theorem 3.1. From Lemma 2.2, we know that wy =

ap = [[wa |}, wr = ao — 1 + wa.
Considering above equations, we have

wp =t +3+ [tre +47,7,...,7, 2ty + 7
—_——
-1

so we get

1
wr = (210 +7) + T = 2n+7+ -, —.
T+ = : 7

Rearranging and using Lemma 2.2 with Definition 2.1 into the above equality, we obtain

wh — (2try + T)wr — (1 + 2tm_1) = 0.

1
This requires that wg = (t7p +4) — 1+ + since wg > 0. If we consider Lemma 2.1, we get

wg = |trg +4;7,7,...,7, 2ty + 7
—_——
-1
and ¢ = {(d).
We obtained that QQ;=7; by using mathematical induction for all ¢ > 0 in Theorem 3.1. Now, we get t4 and

ugq using Lemma 2.2 as follows
tg = 215752 +T1p+ 27917 and ug =1y

ta +ugVd

for 5 = . This shows that the first part of proof is completed.

(2) If we assume that ¢ = 0(mod3) and the parametrization of
d= (trg+7)* +4try_1 + 4

for t > 0, then we have d = 1(mod4) since 74 is even integer. By taking £ instead of ¢ into the case (1), we get

t
Wg= |=Te+47,7,....7,tTs +7
2 —

-1
and ¢ = ¢(d) for £ = 0(mod3). Furthermore,
tg = tng + 71+ 27917 and wug=1y

hold for ¢4 = M

Corollary 3.8. Let d be the square-free positive integer and ¢ > 1 is a positive integer. We assume that
parametrization of d is

which completes the proof.

d= (21 +7)2 + 8711 +4
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then we obtain d = 1(mod4) and

wg= |T¢+47,7,....7,217,+7
——
-1

and ¢ = {(d). Moreover, we have
tg =217 + 710 +2701 and wug =1y

tqg + ud\/E

for €4 = and, Yokoi’s invariant ng is determined as follows:

3, ifl=2
"= 9 ife> o

Also, we give Table 4 where fundamental unit is €4, integral basis element is w, and Yokoi’s invariant is ng
for 2 < ¢(d) < 11. (In this table, we rule out ¢(d) = 4, 5,10 since d is not a square-free positive integer with
these periods).

Table 4
Square-free positive integers d with 2 <i(d) <11
d é(d) ng wq €4
453 2 | 3 11,7, 21] (1491 7v/153)/2
11509 3 | 2 [54;7, 7, 107] (5364 -+ 501/11509) /2
1325490045 6 2 [18204;7,7,...7,36407] (662612498+18200 1/1325490045) /2
67550754629 7 2 [129953;7,7, ...,7,259905] (33774431245+129949+/67550754629) /2
3443597549845 8 2 [927847;7,7, ...,7,1855693] (1721792020097-+927843+/3443597549845) /2
175554743008597 9 2 | [6624854;7,7,...,7,13249707] | (87777323274636-+6624850+/175554743008597) /2
[337737405; (228133106527234995+

456266217972000829 | 11 2 7,7,...,7,675474809] 3377374011/456266217972000829) /2

Proof. The corollary is had if we substitute ¢ = 1 into the case (1) in Theorem 3.6. Let’s show that

(3, ife=2;
T2, it 0> 2.

If we put t4 and wg into the ng and rearrange, then we obtain

[ - [P )

By using the above equality, we have ngy = 3 for £ = 2. From the assumption since 7, is increasing sequence,
we get,

7 21,
2714562<2++ ”21>>2
Ty TZ
3, ifl=2;

for £ > 2. Therefore, we obtain ng = 9 ifl>2

Then Corollary 3.8 is proved. To give numerical examples

for Corollary 3.8, we prepare Table 4.
Corollary 3.9. Let d be the square-free positive integer and ¢ > 1 is a positive integer holding that ¢ =
0(mod3). We assume that parametrization of d is

d= (10 +7) +4m_1 +4
then we have d = 1(mod4) and

wa= |2 4T, T T
2 ——

£—1
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and ¢ = ¢(d). Moreover, we have
tg =T +TTe+2701 and ug=1y

tq +ugVd

for ¢4 = and, Yokoi’s invariant ng = 1.

Besides, we prepare Table 5 where fundamental unit is €4, integral basis element is wy and Yokoi’s invariant
is ng for 3 < ¢(d) < 12 (in this Table, we rule out ¢(d) = 9 since d is not a square-free positive integer with
these periods).

Table s

Square-free positive integers d with 3 <I(d) <12

d g(d) nd Wy €4
3281 3 [ 1 [29;7,7,57] (2864+50+/3281) /2
331505049 6 1 [9104;7,7,...,7,18207] (331372498+18200+/331505049) /2
[1205731804; ] (5815156711680680002+
58151567292136400057 12 1 7,7,...7,2411463607] +2411463600 +/58151567292136400057) /2

Proof. If we substitute ¢ = 1 into the case (2) in Theorem 3.6, we have the Corollary 3.9. Let’s prove that
ng = 1. If we put ty and wug into the ny and rearrange, then we obtain

ol 1 (el |}

From the assumption since 7y is increasing sequence, we get

T 27,
1,1416 > <1++ T";) > 1
Ty TZ

for £ > 3 which completes the proof of the Corollary 3.9. We prepare Table 5 as an numerical illustrations of
Corollary 3.9.

Corollary 3.10. Let d be a square-free positive integer congruent to modulo 4. If we suppose that d is holding
the conditions of Theorem 3.6, then always satisfy that Yokoi’s invariant ng is different from zero. It means that
mq = 0.

Proof. It can be proven as similar of Corollary 3.2 in [15].

Remark 3.11. We should say that the present paper has got the most general theorems for given type real
quadratic fields. Also, we can obtain infinitely many values of d which corresponds to Q(v/d) and determine the
structures of such fields by using our results.
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0. Oszep, L. Bennayap

HakTbl KBaJpaTThIK ©PICTiH apHAYJIbI TYPi OONBIHINA
Keiiblp HoTm»KeJiep

Maxkasaia HAKTBI KBaJPATTHIK ©picTep OYTiH €pKiH OH wq = | ao;7,7,...,7,a¢ | Ti30eKTi GOIIMIEKTIH XKiK-
|

0—1
TesTy TypiMeH Koca, d KBaJpaTTapbIMeH coiikec KesteTini anbikTas sl Conaii-ak Herisri Gipaik »xone Mokoit
GipJyiKTEpl AaHBIKTAJIBII, N g YKOHE My d-MHBAPUAHTTAPBI Wq OOJIIIEriH Y3/1iKCi3 XKiKTeyre KOJIIaHbLIIbI, MYH-
marer £ (d) wg — Ke3eH y3uEmbEsl Q(v/d) HAKTHI KBaIPATTEIK CaHZap epici Typi yimH. ABTOpIap HAKTEL
KBaJIpaTTBHIK 6picTiH OipJ/ik rpymnmnachl TYbIHAANTHIH ipresi 6ipJik TeopUsIChbIH YKaHAPTHII, HAKTHI KBaJIpaT-
TBIK, ©picTe OYTIiHCAHIBI 6A3UCTIK JIEMEHTTIH Y3IiKCi3 OOJIIIEKTI KIKTETyiHIH epeKIlle TyPiH aHBIKTAFaH.

Kiam ce3dep: Tizbekri Geuiiek, KBaApaTTHIK epic, Herisri 6ipiik, Vokoit mHBapmaHTTaphl, OyTiHCAHIHI
6a3HUCTIK JIEMEHT.
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0. Ozer, D. Bellaouar

0. Ozep, 1. Besutayap

HGKOTOpI)Ie pe3yJibTaThbl 110 ClIEMNAJIbHOMY THUILY
BelmeCTBEHHbIX KBaJAPaTUIHbIX noJieii

B crarbe onpeneneno, 9To JieicTBUTEbHBIE KBAaJAPATHYHBIE TOJIsSI COBHAIAIOT C IEJIBIMUA CBOOOIHBIMU I10-

JIOXKUTEJbHBIMI KBaJpaTtaMu d, BKJIIOYasi (POPMY PA3JIOXKEHUs MEMHON Apoou wq = | ao; 7, 7,..., 7, ap
—_———

-1
KpoMe TOro, OIpe/Ie/IecHbI OCHOBHBIC CIUHUIBI ¥ ¢INHUILI VIOKO#, d-MHBAPHAHTEL 14 U Mg TPEMCHHTETIHHO
K HENPEPLIBHOMY PA3JIOKEHHIO 1pobu wq, tae £ (d) — JAynHa Imepuofa wq JJist TAKOTO THIA IIOJIS JIeHCTBHU-
TeIBHBIX KBaAPATHIHEX unceT Q(v/d). ABTOpaMu cTaThbi yiIydrmena Teopus dbyHIAMEHTAILHON €IUHIIIEL,
KOTOpasl HOPOXKAAET eIUHUYHYIO IPYIILY BEIIECTBEHHBIX KBAAPATUIHBIX IOJIEH, & TaKXKe ONPEESIEHa 0CO-
6asi popMa HENPEPLIBHOIO APOOGHOIO PA3JIOMKEHUS I[EJIOUUCICHHOIO DA3UCHOIO JIEMEHTA B BEIIECTBEHHBIX
KBaJIDATHYHBIX IOJISAX.

Karouesvie caosa: nemnHast 1podb, KBaJpaTUIHOE 110JIe, OCHOBHAs €JIMHUIA, WHBApUaHThI Vokoii, memounc-
JIEHHBIN OA3UCHBINA 3JIEMEHT.
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