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Abstract: In this study, we examine k-type pseudo null slant helices due to the Bishop frame, where 

. There are two different cases of the Bishop frame of a pseudo null curve related to the 

Bishop curvatures. Based on these cases, we present that every pseudo null curve is a k-type pseudo 

null curve according to the Bishop frame in Minkowski 3-space 
3

1 .E  Then we obtain the axes of 

k-type pseudo null slant helices, and determine their causal characters. 
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1. Introduction 

In the theory of curves, general helix is very important class of curves. One of the most 

elementary but widely researched topics is helix in the theory of curves. In his famous theorem, 

Lancret states that helices are characterized by the constant ratio of curvature and torsion. Slant 

helices as a special class of general helices were firstly defined by Izumiya and Takeuchi [1]. All 

helices (W-curves) have been completely classified in 
3

1E  by Walrave [2]. Several authors 

introduced different types of helices and investigated their properties. Kula and Yayli studied 

spherical images of tangent and binormal indicatrices of slant helices and also showed that spherical 

images are spherical helices [3]. Kula et al. characterized slant helices in Euclidean 3-space [4]. Also 

the work [5] studies the physical applications of slant helices in the ordinary space. 

The notion of k-type slant helices refers to the class of curves having a property that the scalar 

product of frame's vector field and a fixed axis is constant. The studies about k-type slant helices are 

{0,1,2}k



287 

AIMS Mathematics  Volume 5, Issue 1, 286–299. 

as follows: Ergüt et al. studied non-null k-type slant helices in Minkowski 3-space [6]. Ali et al. 

examined k-type partially null and pseudo null curves in Minkowski 4-space 
4

1E [7]. Pseudo null 

Darboux helices, null Cartan Darboux helices, k-type pseudo null Darboux helices, and k-type null 

Cartan helices were discussed in [8–10]. Qian presented some results of k-type null slant helices in 

Minkowski space time [11]. Recently, Grbovic and Nešovic obtained some results of k-type null 

Cartan slant helices according to the generalized Bishop frame [12]. 

The vanishing of second derivative of a curve has led to the study of the new frame. First the 

behaviour of a curve was studied by a new adapted frame which is called Bishop frame or relatively 

parallel adapted frame [13]. This frame is composed of the vectors; the tangential vector field , 

and two normal vector fields  and  which are obtained by rotating the Serret-Frenet vectors 

 and  in the normal plane  of the curve, in such a way that they become relatively parallel [13]. 

Bishop frame have been defined for curves in different Euclidean ambient spaces [14–17]. There is 

also interesting study which points out the physical applications of Bishop frame, see [18]. 

In this paper, we study k-type pseudo null slant helices according to two possible forms of the 

Bishop frame given by Grbovic and Nesovic [15]. We show that every pseudo null curve is a k-type 

pseudo null curve according to the Bishop frame in Minkowski 3-space 
3

1 .E  Then we find the axes 

of k-type pseudo null slant helices, and determine their causal characters. 

2. Preliminaries 

The three dimensional Minkowski space 
3

1E  is a real vector space 3R  endowed with the 

standard indefinite flat metric defined by 

  (2.1) 

where  and  are any two vectors in 
3

1 .E  Since this metric is an 

indefinite metric, an arbitrary vector 
3

1x E  has one of three Lorentzian characters: it is a spacelike 

vector if  or ; timelike  and null (lightlike)  for  The 

pseudo-norm of the arbitrary vector 
3

1x E  is given by  Similarly, an arbitrary curve 

 in 
3

1E  can locally be spacelike, timelike or null (lightlike) if its velocity vector '  is, 

respectively, spacelike, timelike or null (lightlike), for every s I E  . The curve  is 

called a unit speed curve if its velocity vector '  is unit one i.e, ' =1 [19,20]. 

A spacelike curve 
3

1: I E   is called a pseudo null curve, if its principal normal vector field 

 and binormal vector field B are null vector fields satisfying the condition  The 

Frenet formulae of a non-geodesic pseudo null curve  have the form 

  (2.2) 

where the first Frenet curvature  and the second Frenet curvature (torsion)  is an 
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arbitrary function of arc-length parameter  of  [2]. Also the vector fields of Frenet frame holds 

the following relations: 

, =1, , = , = 0, , = , = 0, , =1,T T N N B B T N T B N B  

and 

  

The Frenet frame  is positively oriented, if . 

Definition 2.1. The Bishop frame  of a pseudo null curve  in 
3

1E  is positively 

oriented pseudo-orthonormal frame consisting of the tangential vector field  and two relatively 

parallel lightlike normal vector fields  and  [15]. 

The vector fields of The Bishop frame of a pseudo null curve  in 
3

1E  satisfy the relations  [15] 

 1 1 2 2 1 1 1 1 1 2 1 2, =1, , = , = 0, , = , = 0, , =1,T T N N N N T N T N N N  (2.3) 

and 

  (2.4) 

Theorem 2.1. ([15]) Let  be a pseudo null curve in 
3

1E  parameterized by the arc-length  with 

the curvature  and the torsion  

(i) Then the Bishop frame  and the Frenet frame  of  are related by: 

  (2.5) 

and the Frenet equations of  according to the Bishop frame read 
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where  and 2 0 0 0

( )
( ) = , ;
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s c e c R


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  (2.7) 

and the Frenet equations of  according to the Bishop frame read 

 

1 2 1 1

1 1 1

2 2 2

' 0

' = 0 0 ,

' 0 0

T T

N N

N N

 





     
     


     
          

 (2.8) 

where 1 0 0 0

( )
( ) = ,

s ds
s c e c R


   and  

3. On k-type pseudo null slant helices due to the Bishop frame in Minkowski 3-space 

In this section, we study k-type pseudo null slant helices framed by the Bishop frame in 

Minkowski 3-space 
3

1 .E  From Equations (2.7) and (2.8), there are two cases arising from the 

Bishop curvatures. In the first case, the first Bishop curvature  vanishes, and the vector field  

is zero vector. In the second case, the second Bishop curvature  vanishes, and the vector field 

 is zero vector. We will examine these cases separately in this section. 

Definition 3.1. A pseudo null curve  in 
3

1E  given by the Bishop frame  is called a 

0-type pseudo null slant helix if there exists a non zero fixed direction 
3

1V E  such that satisfies 

1, = , ,T V c c R  

and a k-type pseudo null slant helices for  if there exists a non zero fixed direction 
3

1V E  

such that hold 

 , = , .kN V c c R  (3.1) 

The fixed direction  is called axis of the helix. 

3.1. The first case 

Theorem 3.1. Every pseudo null curve  in 
3

1E  with the Bishop curvatures  and 
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Proof. Let us take the pseudo curve  framed by the Bishop frame. According to Definition 3.1, 
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3
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 1, = , .T V c c R  (3.2) 

The fixed direction  can be decomposed as 

  (3.3) 

where  and  are some differential functions in terms of . Differentiating the Eq. (3.3) 

with respect to  and using (2.6), we have the following system of differential equations 
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where 1 .c R  Using (3.5), we have the axis  as 

  (3.6) 

Differentiating (3.6) and using (2.6) gives  Hence,  is a fixed direction. Thus,  is a 

0-type pseudo null slant helix. 

Let us show that pseudo null curve is also a 1-type pseudo null slant helix. According to 

Definition 3.1, there exists a fixed direction 
3

1V E  such that  

 1, = , .N V c c R  (3.7) 

The fixed direction  is decomposed as follows: 

  (3.8) 

where  and  are some differential functions in terms of . Differentiating the Eq. (3.8) 

with respect to  and using (2.6), we have the following system of differential equations 
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1 2

2 2 2

( ) = ( ) ,

( ) = ( ( )) ,

s c s ds

s c s ds

 
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where .c R   

Using (3.10), then we have  

  (3.11) 

Differentiating (3.11) and using (2.6), then we arrive at  Hence,  is a fixed direction. 

Therefore,  is a 1-type pseudo null slant helix. 

Let us show that pseudo null curve is also a 2-type pseudo null slant helix. Due to Definition 3.1, 

there exists a fixed direction 
3

1V E  such that 

 2 , = , .N V c c R  (3.12) 

The fixed direction  is written as 

  (3.13) 

where  and  are some differential functions in terms of . Differentiating the Eq. (3.13) 

with respect to  and using (2.6), we have the following differential equation system 
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From (3.14), we get 

  (3.15) 

Using (3.15), the axis  is obtained as 

  (3.16) 

From (3.16) and (2.6), we find  So,  is a fixed direction.  

As a result, every pseudo null curve according to the Bishop frame with the Bishop curvatures 
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3
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where c R  and 1 .c R  

Corollary 3.2. An axis of the 1-type null Cartan slant helix  in 
3

1E  with the Bishop curvatures 

 and  is given by 

 

where c R . 

Corollary 3.3. An axis of the 2-type null Cartan slant helix  in 
3

1E  with the Bishop curvatures 

 and  is given by 

  

where c R . 
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Figure 1. The k-type pseudo null slant helix. 
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 1, = , .T V c c R  (3.17) 

The fixed direction  can be decomposed as 

  (3.18) 

where  and  are some differential functions in terms of . Differentiating the Eq. (3.18) 

with respect to  and using (2.8), we have the following system of differential equations 
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Using (2.8) in the differentiation of (3.21), then we find  Hence,  is a fixed direction. 
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3
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Using (3.25), then the axis  is as 
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where 1,c c R . 

Corollary 3.8. An axis of the 1-type null Cartan slant helix  in 
3

1E  with the Bishop curvatures 

 and  is given by 

 

where c R . 

Corollary 3.9. An axis of the 2-type null Cartan slant helix  in 
3

1E  with the Bishop curvatures 

 and  is given by 

 

where c R . 

Corollary 3.10. The causal character of the axis  of the 0-type pseudo null slant helix  in 
3

1E  

with the Bishop curvatures  and  is either spacelike or null. 
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3

1E  

with the Bishop curvatures  and  is null. 

Corollary 3.12. The causal character of the axis  of the 2-type pseudo null slant helix  in 
3

1E  

with the Bishop curvatures  and  is 

(i) spacelike if 

   

(ii) timelike if 

 

(iii) null if 

 

Example 3.2. Let us consider a pseudo null curve in 
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Figure 2. The k-type pseudo null slant helix. 

According to the statement (ii) of Theorem 2.1, the Bishop curvatures of  are 
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all k-type pseudo null slant helices in terms of the Bishop frame's vector fields. Finally, we determine 

the causal characters of the axes in two possible cases. 
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