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1Abstract—Autonomous tumor prostheses are extended 
without the need of a clinic and of a medical supervision. It is 
necessary to make sure that the patient is not standing before 
extending these prostheses. This study aims to determine the 
posture of the patient for expandable tumor prostheses by 
employing oft-used three machine learning-based classification 
methods through comparing them all with each other. Patient 
posture is determined by using accelerometer and gyroscope 
data from inertial control unit placed in autonomous 
expandable tumor prosthesis. By using the created dataset, 48 
features are extracted. Then, for optimization, with feature 
selection, the number of features is reduced to 10. The selected 
features are processed using the decision tree, the k-nearest 
neighborhood and support vector machine algorithms. These 
algorithms were compared with each other using machine 
learning performance parameters. Accuracy, recall, precision 
and F-score values are calculated and compared. 
Consequently, support vector machine is determined as the 
most successful technique. Then, the model is tested on the 
experimental setup developed within the scope of the study, 
and the posture is determined. It is found that with this system, 
in the presence of a load on the prosthesis, it can be accurately 
detected at a rate of 97.1% (the recall parameter). 
 

Index Terms—biomedical measurement, machine learning, 
prosthetics, supervised learning, support vector machines. 

I. INTRODUCTION 

Bone cancer is a common type of cancer that often occurs 
during children's growth period. The most common site of 
bone cancer in the human body is the long bones of the 
lower limb, especially the distal part of the femoral bone. In 
cases that occur in the legs, the cancerous portion of the 
bone is usually surgically taken, including the growth plate, 
and a prosthesis is inserted instead. The child's healthy leg 
continues to grow but its prosthetic leg does not grow. This 
causes posture and gait disturbances as well as severe pain. 
Therefore, expandable tumor prostheses are used in 
pediatric patients. Surgical intervention is not required to 
perform an extension procedure after implantation in today’s 
expandable tumor prostheses [1–6]. However, during the 
extension of these prostheses, the patient has to be in the 
clinical setting. The amount of elongation during the 
procedure is monitored using medical imaging techniques. 
The main problems here include increased physician 
workload, potential human errors that may occur during the 
measurement of the limb length, patient’s exposure to 
radiation at every measurement, extension of relatively large 
sizes, and the fact that the patient often has to go to the 

clinic for measurements and lengthening. In order to 
eliminate these problems, the extension should be done 
autonomously to be clinically independent. 
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During the extension of the existing prostheses, the 
physician ensures that the patient is in the supine position. 
This allows the patient's body weight not to be on the 
prosthesis, and the prosthesis can thus be extended by 
applying less force. It is necessary to determine whether the 
patient is in the supine position, because the extension 
procedure in autonomous prostheses will not be performed 
in the clinical environment and will not be physician’s 
supervision. 

Numerous nonlinear modeling approaches are available in 
the literature of health and medicine. Methods that 
successfully model nonlinear systems such as multivariate 
polynomial regression, artificial neural networks, Support 
Vector Machines (SVM), Bayesian filtering and fuzzy rule 
interpolation have been used in various studies [7-10]. 

Human activity recognition is an important research area 
with a wide range of applications. Today, activity 
recognition is used in many areas such as industrial 
automation, sports and entertainment, health applications, 
and rehabilitation. There are many studies on the activity 
recognition by microcontroller-based systems on wearable 
and portable structures. Most of these studies use SVM as a 
classification method [11–15]. 

Although there are a large number of studies available in 
the field of activity recognition, the number of studies on 
posture recognition is relatively low. The majority of these 
studies, though, rely exclusively on vision-based techniques, 
not on Inertial Measurement Unit (IMU) [16–22].  

Huang J., Yu X., Wang Y., and Xiao X. have connected 
five IMUs to varying parts of the body of elderly individuals 
to determine their posture and location in the house [23]. 
Similarly, Gjoreski H., Luštrek M. and Gams M. have 
connected 4 accelerometers to the body of elderly 
individuals to determine their posture [24]. Allen F.R., 
Ambikairajah E., Lovell N.H. and Celler B.G.  performed 
the same procedure with a single accelerometer fitted to the 
belt on the waist of an elderly person [25]. Sazonov E.S., 
Fulk G., Hill J., Schutz Y. and Browning R. determined 
whether the patient is standing or sitting of obesity patients 
with accelerometer and pressure sensors placed on the shoe 
[26]. All of these studies are aimed at fall detection of 
elderly people at home. Chen et al. used vision-based 
posture detection in the workplace of construction workers 
with IMU data placed on the worker's helmet for verification 
purposes [27]. Nevertheless, the literature presents virtually 
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no study aimed at recognizing activity or posture in an 
implantable system. 

In contrast to the literature, this study recognizes patient 
posture using the Attitude and Heading Reference System 
(AHRS) in the implantable prosthesis structure. Patient 
posture recognition is performed on the autonomous 
expandable tumor prosthesis previously developed by the 
authors in the scope of same project [28]. Detailed 
information about the project is available at 
http://ytubiomechatronics.com/portfolio-item/tumor-prost/. 
The contribution of this study to the literature is that, the 
posture of a patient for expandable tumor prostheses is 
recognized for the first time and while doing so, the study 
uses AHRS and machine learning. This study could 
contribute significantly to the development of autonomous 
tumor prostheses. 

The study is organized as follows. Section 2 introduces 
the autonomous tumor prosthesis and experimental setup 
developed within the scope of the study. Section 3 presents 
how to achieve posture recognition. The steps of collecting 
and processing data are also mentioned in this section. 
Section 4 gives the results of the study in 3 subsections: 
training results, test results, and experimental results. 
Section 5 gives discusses of the findings of this study. 

II. TUMOR PROSTHESIS AND EXPERIMENTAL SETUP 

The tumor prosthesis developed within the scope of the 
study is designed for use in the distal part of the femur bone. 
The internal control unit, which controls the internal 
components of the prosthesis, is placed in the artificial knee 
joint. This unit is developed based on the Atmega 2560 
microcontroller. The internal control unit sensors inside the 
prosthetic knee joint measure the amount of elongation, 
temperature, internal battery charge level, and patient 
posture. It also wirelessly shares the information received 
from the sensors (internal temperature rise, reduced internal 
battery charge, etc.) with the external control unit.  

The prosthesis communicates with the external units of 
the system wirelessly. XBee; wireless communication 
module employed in this study is capable of point-to-point 
communication using the IEEE 802.15.4 network protocol. 
With 128-bit encryption, it is only possible to exchange 
information between previously matched XBee modules.

To test the success of the system, the experimental setup in 
Figure 1.a is used. This setup involves a skeleton model cut 
from the lumbar vertebrae, only using the lower extremity 
part. The skeleton model is combined with an artificial 
lower extremity model for easy application of the wearable 
units. Another property of this model is that the developed 
prosthesis is implanted in the distal part of the right femur 
bone of the skeletal model. 

In the current study, a GY-953 AHRS module is inserted 
into the prosthesis to determine the posture status of the 
patient before the extension is performed. This module 
consists of a 3-axis accelerometer, a 3-axis gyroscope, and a 
3-axis magnetometer. The acceleration range can be 
adjusted between 2g and 16g, the angular velocity can be 
adjusted between 250 dps and 2000 dps, and the magnetic 
field density can be adjusted between 0.15µT and 0.6µT. 
Figure 1.b shows the posture recognition hardware structure 
in the developed system, the details of which are given in 
Section 3.  

III. POSTURE RECOGNITION 

Machine learning uses programmed algorithms that 
acquire and analyze input data to evaluate output values 
within an acceptable range. As new data are added to these 
algorithms, they examine and optimize their operations to 
increase productivity and improve intelligence over time 
[29-31]. 

In studies on human posture recognition, firstly, a 
database is formed from AHRS data. The database is 
divided into two parts: training and testing. Following the 
feature extraction, classification is performed based on these 
features, an appropriate algorithm is selected, and the 
success is tested. Of particular importance are the steps of 
feature selection and classification algorithm selection, 
which can potentially affect the success of the system and 
the steps the researcher focuses on [32–35]. The increase in 
the size of the data, the number of features, the complexity 
of the calculations and the increase in the degree of the 
classification algorithm bring up the problems of storage 
space and processing time, particularly in microcontroller-
based applications. 

 

(a)  (b)  
Figure 1. a) Experimental setup and user interface screen b) Posture recognition hardware structure 
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Therefore, studies on wearable, portable, or implantable 
systems should take into consideration not only the success 
in terms of classification but also memory usage, each of 
which should ideally be optimized. 

Of the three sensors (accelerometer, gyroscope and 
magnetometer) in the AHRS structure, only the 
accelerometer and gyroscope are used in this study. The 
magnetometer is not included as it is not directly relevant in 
determining activity and posture. The ranges of the 
accelerometer and gyroscope sensors are set at ± 2g and ± 
250dps, respectively. 3-axis sensor data is collected from 
experimental setup at a 100 Hz sampling frequency. Since 
the research is not directly conducted on a live subject and 
experiments are carried out on the experimental setup that 
manually brought into various postures by the researchers, 
the range and frequency values are defined in this way. 
Prosthesis load status information recorded for each data: 1 
(patient standing, extra load on the prosthesis), 0 (patient is 
lying on his back, the prosthesis is ready to elongate). In 
fact, the patient's posture could be very diverse. However, 
what really matters is to accurately determine whether there 
is a load on the prosthesis or not. For this reason, all 
postures with a load on the prosthesis are evaluated as 1, and 
all postures without a load on the prosthesis are evaluated as 
0. The purpose of feature extraction is to convert the original 
dataset into a dataset with a small number of variables 
containing the most distinctive information. This reduces the 
data size, removes unnecessary or irrelevant information, 
and turns the dataset into a more suitable form for later 
classifications. In order to increase the classification 
performance and achieve high classification speed, the 
bandwidth of the input data should be reduced and presented 
to the classifiers [36, 37]. Oft-used 8 features in activity 
recognition are extracted using raw data from the AHRS. 
The specified features are described in Table 1 and 
explained in detail below. 

PCA: In the Principal Component Analysis (PCA) 
method, a new dataset is created by multiplying the feature 
vector created by the eigenvalues and eigenvectors from 
covariance matrix. Covariance matrix is the difference 
between the average of each component of the dataset and 
its eigenvectors. PCA is a method converting the dataset 
into another dataset with fewer variables. At this point, the 
new variables happen to be the linear components of the 
original variables. In other words, the method of converting 
a structure with a definite number of variables in correlation 
with each other into another structure with less variables 
having no correlation with each other is called PCA. 

Mean: It is the result of summing all the components of 
the dataset and dividing the sum by the number of 
components, and is given by the following equation: 
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Median: It is the value separating the greater half from 
the lesser half of a data sample, a population or a probability 
distribution. For a dataset, it could be thought of as the 
"middle" value. 

Energy: It is the result obtained by squaring each variable 
in the dataset and summing them, and is given by the 

following equation: 
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Variance (σ2): It is dividing the multiplication of the 
squares of the difference between the arithmetic mean and 
each component to preceding number of components, and is 
given by the following equation: 
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Standard Deviation (σ): It is the square root of the 
variance, and is given by the following equation: 
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Sum: It is the value obtained by summing the 
components in the dataset, and is given by the following 
equation: 
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Band Power: It is the average of the sum of squares of 
the components in the dataset, and is given by the following 
equation: 
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Accuracy is the performance parameter which shows the 
success rate of classification where TP stands for true 
positives, TN stands for true negatives, FP stands for false 
positives, and FN stands for false negatives and is given by 
the following equation: 

P N

P N P N

T T
Accuracy

T T F F




  
  (7) 

One of the critical parameters in the posture recognition 
for our system is to accurately determine when there is a 
load on the prosthesis. This is met by the term “recall” in 
machine learning, and is calculated as in Equation 8. 

P
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T
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    (8) 

TABLE I. FEATURES USED FOR CLASSIFICATION 
Feature Description 

PCA 
coefficient 

Principal Components Analysis coefficient of the 
signal  

Mean The average value of the signal  

Median The median signal value  

Energy Quadratic sum of the signal 

Variance 
The average of squares of the difference of the 

signal and the mean 

Standard 
Deviation 

The square root of the variance 

Sum The sum of the signal 

Band Power Average power value of the signal 
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Figure 2. Confusion matrix 
 

The secondary significant parameter is the “precision”, 
which reflects how true is the detection of the presence of a 
load on the prothesis. It is calculated as in Equation 9. 

P

P P

T
Precision

T F



  (9) 

The F-score, obtained from the recall and precision 
parameters, which indicates the real success rate of the 
system, is given by Equation 10. 

 

Recall Precision
F = 2

Recall + Precision


   (10) 

 

Decision Tree (DT), k- Nearest Neighborhood (k-NN), 
and Support Vector Machines (SVM) are the most 
commonly used classification algorithms in the field of 
posture and activity classification. A DT is a decision 
support tool that uses a tree diagram or decision model and 
their possible outcomes, including the results of random 
events, resource costs, and benefits. It is a way to display an 
algorithm that contains only conditional control expressions. 
Tree-based learning algorithms are one of the best and most 
widely used methods of supervised learning. Tree-based 
methods provide predictive models with great accuracy, 
stability, and ease of interpretation. Unlike linear models, 
they match nonlinear relationships quite well. They are used 
in the solution of many classification and regression 
problems. In DTs, the evaluation starts from the root of the 
tree to estimate the class tag of a record. Root attribute 
values are compared to the attribute of the record. On the 
basis of comparison, it follows the branch corresponding to 
this value and skips to the next node. It continues to 
compare the attribute values of the record with other inner 
nodes of the tree until a leaf node with the predicted class 
value is reached. The modeled DT can be used to predict the 
target class or value. DTs have been applied to a wide range 
of classification problems [38-41]. 

The k-NN algorithm is one of the simplest and most 
widely used classification algorithms. k-NN is a non-
parametric, lazy learning algorithm. Unlike eager learning, 
lazy learning does not have a training phase. It does not 
learn training data; instead, it “memorizes” the training 
dataset. When an estimate is desired, the closest neighbors 
in the whole dataset are searched. In the process of this 
algorithm, a k value is determined. The meaning of this k 
value is the number of the elements to be looked up. When a 
value comes, the distance between the incoming value is 
calculated by taking the nearest k element. Euclidean 
function is often used in distance calculation. As an 
alternative to the Euclidean function, Manhattan, 
Minkowski and Hamming functions could also be used. 
After the distance is calculated, it is sorted and the incoming 

value is assigned to the appropriate class. The k-NN 
algorithm has been used by many researchers for posture 
and activity recognition [42-45]. 

SVM is a popular method of machine learning based on 
finding hyperplanes that determine the maximum margin 
among the models of each class and the most suitable 
margin among the classes. In addition, by using the so-
called basic functions, they could project data from one 
original feature area to another large area. In this way, a 
linear separation in the new field becomes equivalent to a 
nonlinear classification in the original field. An optimization 
technique is used to find hyperplanes of optimal separators 
that perform the necessary classifications. Typically, three 
types of kernels are used for optimum SVM: linear, 
polynomial, and radial basic function (RBF) kernel. 
Generally, the linear kernel is suitable for linearly separable 
datasets, while polynomial and RBF kernels are suitable for 
datasets that cannot be separated linearly [37]. The SVM 
algorithm has been used by many researchers [46-49] 

In this study, the data is divided into two parts for 80% 
training and 20% testing. The cross validation is selected as 
10 folds and the number of neighborhoods in k-NN is 
selected as 10.  

The results obtained under the specified conditions are 
described in detail in the next section. 

IV. RESULTS 

In data classification applications, a feature selection 
process is generally performed. Feature selection has many 
potential benefits, such as simplifying data visualization and 
understanding, reducing measurement and storage 
requirements, reducing training and usage times, reducing 
the size of the data, and improving recognition performance 
[50].  

In this study, F-score for feature selection strategy is used 
[51], the performance parameters are analyzed, and 48 
features acquired from the AHRS raw data are grouped as 
relevant, irrelevant, and redundant (Table 2). First, the F-
score value of each feature is calculated. Then, the 
classification success of the system is measured by trying 
various threshold values. As a result of this process, the 
optimum threshold value is determined to be 0.7. Features 
with an F-score below threshold are determined as irrelevant 
and features with an F-score greater than 0.7 are relevant. 
One of the relevant features, which gives the same 
classification result for each raw of train data, is marked as 
redundant. Only one of the relevant features found is 
derived from the data of the gyroscope sensor. Five of the 
other nine features belong to the z axis of the accelerometer. 
Considering the functions of these sensors, an axis of the 
accelerometer is already expected to be more effective in 
determining the supine position of the patient. It is found 
that 3 features in z axis and 2 features in x axis belonging to 
the accelerometer contribute greatly to the classification. 
However, it is noticed that they are met by other features 
and are thus excluded from the classification by being 
marked as redundant. Thus, the 10 relevant features are 
determined and the classification is made. In the 
classification, DT, k-NN and SVM methods are tried 
separately.
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TABLE II. INDIVIDUAL PERFORMANCE PARAMETERS OF FEATURES FOR FEATURE SELECTION 

Feature Sensor Axis TP TN FP FN Accuracy Recall Precision F-score Effect 

X 25 10 6 9 0.700 0.735 0.806 0.769 Relevant 

Y 24 3 13 10 0.540 0.706 0.649 0.676 Irrelevant ACC 

Z 32 14 2 2 0.920 0.941 0.941 0.941 Relevant 

X 21 7 9 13 0.560 0.618 0.700 0.656 Irrelevant 

Y 14 16 0 20 0.600 0.412 1.000 0.583 Irrelevant 

PCA 
coefficie

nt 
GYR 

Z 22 3 13 12 0.500 0.647 0.629 0.638 Irrelevant 

X 20 3 13 14 0.460 0.588 0.606 0.597 Irrelevant 

Y 19 4 12 15 0.460 0.559 0.613 0.585 Irrelevant ACC 

Z 26 10 6 8 0.720 0.765 0.813 0.788 Relevant 

X 23 6 10 11 0.580 0.676 0.697 0.687 Irrelevant 

Y 22 7 9 12 0.580 0.647 0.710 0.677 Irrelevant 

Energy 

GYR 

Z 23 5 11 11 0.560 0.676 0.676 0.676 Irrelevant 

X 27 11 5 7 0.760 0.794 0.844 0.818 Relevant 

Y 24 3 13 10 0.540 0.706 0.649 0.676 Irrelevant ACC 

Z 32 14 2 2 0.920 0.941 0.941 0.941 Redundant 

X 21 7 9 13 0.560 0.618 0.700 0.656 Irrelevant 

Y 21 7 9 13 0.560 0.618 0.700 0.656 Irrelevant 

Median 

GYR 

Z 19 7 9 15 0.520 0.559 0.679 0.613 Irrelevant 

X 25 10 6 9 0.700 0.735 0.806 0.769 Redundant 

Y 24 3 13 10 0.540 0.706 0.649 0.676 Irrelevant ACC 

Z 32 14 2 2 0.920 0.941 0.941 0.941 Redundant 

X 23 7 9 11 0.600 0.676 0.719 0.697 Irrelevant 

Y 15 14 2 19 0.580 0.441 0.882 0.588 Irrelevant 

Sum 

GYR 

Z 20 7 9 14 0.540 0.588 0.690 0.635 Irrelevant 

X 33 1 15 1 0.680 0.971 0.688 0.805 Relevant 

Y 33 0 16 1 0.660 0.971 0.673 0.795 Relevant ACC 

Z 15 7 9 19 0.440 0.441 0.625 0.517 Irrelevant 

X 22 8 8 12 0.600 0.647 0.733 0.688 Irrelevant 

Y 22 7 9 12 0.580 0.647 0.710 0.677 Irrelevant 

Var 

GYR 

Z 21 5 11 13 0.520 0.618 0.656 0.636 Irrelevant 

X 25 10 6 9 0.700 0.735 0.806 0.769 Redundant 

Y 24 3 13 10 0.540 0.706 0.649 0.676 Irrelevant ACC 

Z 32 14 2 2 0.920 0.941 0.941 0.941 Redundant 

X 23 7 9 11 0.600 0.676 0.719 0.697 Irrelevant 

Y 15 14 2 19 0.580 0.441 0.882 0.588 Irrelevant 

Mean 

GYR 

Z 20 7 9 14 0.540 0.588 0.690 0.635 Irrelevant 

X 31 1 15 3 0.640 0.912 0.674 0.775 Relevant 

Y 34 0 16 0 0.680 1.000 0.680 0.810 Irrelevant ACC 

Z 26 3 13 8 0.580 0.765 0.667 0.712 Relevant 

X 23 8 8 11 0.620 0.676 0.742 0.708 Relevant 

Y 17 11 5 17 0.560 0.500 0.773 0.607 Irrelevant 

Std. Dev. 

GYR 

Z 20 5 11 14 0.500 0.588 0.645 0.615 Irrelevant 

X 20 3 13 14 0.460 0.588 0.606 0.597 Irrelevant 

Y 19 4 12 15 0.460 0.559 0.613 0.585 Irrelevant ACC 

Z 26 10 6 8 0.720 0.765 0.813 0.788 Relevant 

X 23 6 10 11 0.580 0.676 0.697 0.687 Irrelevant 

Y 22 7 9 12 0.580 0.647 0.710 0.677 Irrelevant 

Band 
Power 

GYR 

Z 23 5 11 11 0.560 0.676 0.676 0.676 Irrelevant 
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A. Training Results 

The new feature dataset is created using 10 relevant 
features, and then is processed on MATLAB Classification 
Learner Toolbox. Using 80% of raw data for training, 
classification is performed with DT, SVM and k-NN 
methods. The classification performance of DT remained 
low compared to other methods. The most successful 
method for classification is the SVM with an 89.5% 
accuracy with an F-score of 92.6%. Similarly, the accuracy 
and F-score values of the k-NN algorithm are high. 
However, both parameters appear to be more successful in 
SVM. Training results of the DT algorithm have been well 
below the SVM and k-NN algorithms. Especially the recall 
value being 88.5% is an indication that the DT algorithm 
will not be suitable for this application. Details of the 
training results are given in Figure 3. It is seen that positive 
results are obtained from the approach that solves the 
memory problem for computer-independent systems and 
thus increases the speed of classification process by 
decreasing the number of features. In this study, although 
the number of features has been reduced from 48 to 10, the 
performance is almost never decreased. It is concluded that 
the accuracies of various classification algorithms have quite 
different results in solving this problem. 

B. Test Results 

The part of the feature dataset reserved for testing is 
processed in MATLAB Classification Learner Toolbox as in 
training data. The 20% portion of the raw data, which was 
previously not used for training, is tested on DT, SVM and 
k-NN models. The purpose of the test is to determine 
whether the models created with a limited amount of data 
show a performance comparable to the training when they 
meet a new set of data. The parameters found in the test 
result are given in Figure 4. The test results show that 
success is slightly lower than the training results. Again, 
SVM stands out as the most successful classifier. The 
accuracy parameter, which shows the overall success of the 
classification, indicates that 83.3% of the samples are saved 
to the correct class using SVM. All of the other parameters 
come out to match the training results. At this point, it is 
understood that the classifier does not have a problem like 
over-learning. 

C. Experimental Results 

As a result of the operations performed in the simulation 
environment, it is concluded that for this study, SVM is a 
better classification tool than the other methods. The SVM 
model is converted to C code and experimentally applied to 
the internal control unit processor of the tumor prosthesis. In 
order to test the efficiency and precision of the applied 
classification model, experiments have been done on the 
experimental setup.  Experimental setup is manually moved 
into various posture states, 200 times in total. During the 
experiments, the experimental setup is positioned as 
follows; lying on its back, lying on its face, lying on its right 
side, lying on its left side, and standing, in different speeds 
and combinations. The classes estimated by using the data 
of the AHRS (3 axis accelerometer and 3 axis gyroscope 
data) are transferred to the computer wirelessly (Figure 5). 
The received data is: 1 (patient standing, extra load on the 

prosthesis), 0 (patient lying, prosthesis is ready to extend). 
The output values are compared to the actual values that are 
recorded manually and TP, TN, FP and FN values are 
determined. In Figure 6, these values are given on the 
confusion matrix. Accuracy, recall, precision, and F-score 
values are calculated using these values. The general 
accuracy of the classification is calculated as 88%. 
However, a crucial purpose of this study is to be able to 
accurately detect the presence a load on the prosthesis and 
thus not to initiate the extension process. This success is 
measured by the recall value, which, according to the 
experimental results, is determined as 97.1%.  Despite the 
fact that the prosthesis does not actually have a load on it, 
the conditions determined by the classifier as a load are 
considered as false alarms. Precision value is the rate that 
indicates how low false alarms are. In this classification, it is 
86.8%. This means that although the prosthesis does not 
have a load on it, system recognizes one and thus, does not 
initiate the extension procedure. This failure could be seen 
in 13.2% of the trials and could be taken as reasonable. The 
F-score value, which indicates the overall performance of 
the classification, is determined as 91.7%. The results of the 
reexamination of the data collected this way are given in 
Figure 7. The classification success of the study overlaps 
with other studies in the literature that perform 2-state 
posture analysis [22]. 

 

 
Figure 3. Performance indicators of training results 
 

 
Figure 4. Performance indicators of test results 
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Figure 5. Experimental data collection process 

 

 
Figure 6. Confusion matrix of experimental classification results 
 

 

 
Figure 7. Performance indicators of experimental SVM 

V. CONCLUSION 

This study aims to determine whether there is a load on 
the prosthesis before extending autonomous tumor 
prosthesis. For this determination, the posture status of the 
patient using the prosthesis is recognized. The 3-axis data 
obtained from the accelerometer and gyroscope sensors used 
in the prosthesis structure are processed by machine 
learning, and the classification is made and the posture 
status is estimated. The experimental setup with the 
prosthesis developed within the scope of the study is 
positioned in various posture states and the sensor data is 
transferred to the computer wirelessly. Then, the dataset is 
created. 8 features are created for the sensor axis outputs (6 
axis) that constitute each column of the dataset, so that a 
total of 48 features are obtained. Classification process is 
done by using these features one by one and classification 
performances of each feature are calculated. 10 of the 
features, which made the most positive contribution to the 
classification, are selected based on the F-score values. 
Using these features, classification has been tried with 
SVM, DT and k-NN algorithms and the most successful 
classification is achieved with SVM. The created model is 
loaded on the microprocessor of the prosthesis. After 
applied experiments, it is observed that the system 
successfully classified the posture. 
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