
On Computing the Degree of a Chebyshev Polynomial from Its
Value1

Erdal Imamoglu

Department of Mathematics, Kirklareli University

Kayali 39100, Kirklareli, Turkey

Erich L. Kaltofen

Department of Mathematics, North Carolina State University
Raleigh, North Carolina 27695-8205, USA

Abstract

Algorithms for interpolating a polynomial f from its evaluation points whose running time de-
pends on the sparsity t of the polynomial when it is represented as a linear combination of
t Chebyshev Polynomials of the First Kind with non-zero scalar coefficients are given by Lak-
shman Y. N. and Saunders [SIAM J. Comput., vol. 24 (1995)], Kaltofen and Lee [J. Symbolic
Comput., vol. 36 (2003)] and Arnold and Kaltofen [Proc. ISSAC 2015]. The term degrees are
computed from values of Chebyshev Polynomials of those degrees. We give an algorithm that
computes those degrees in the manner of the Pohlig and Hellman algorithm [IEEE Trans. Inf.
Theor., vol 24 (1978)] for computing discrete logarithms modulo a prime number p when the fac-
torization of p−1 (or p + 1) has small prime factors, that is, when p−1 (or p + 1) is smooth. Our
algorithm can determine the Chebyshev degrees modulo such primes in bit complexity log(p)O(1)

times the squareroot of the largest prime factor of p − 1 (or p + 1).

Keywords: Algorithms, Discrete Logarithms, Chebyshev Polynomials, Interpolation in terms of
the Chebyshev Polynomials of the First Kind.

1. Introduction

Let p ≥ 3 be a prime number and Tn(x) ∈ Zp[x] be the Chebyshev Polynomial of the First
Kind of degree n modulo p, which can be defined by the recurrence

T0(x) = 1,T1(x) = x,Tn(x) = (2xTn−1(x) − Tn−2(x)) mod p for all n ≥ 2. (1)

The following problem is addressed in our paper:

Problem 1. From input p, β ∈ Zp \ {0}, ζ = Tδ(β) ∈ Zp compute δ.

1Supported by National Science Foundation CCF-1421128 and CCF-1708884.
Email addresses: eimamoglu@klu.edu.tr (Erdal Imamoglu), kaltofen@math.ncsu.edu (Erich L. Kaltofen)
URL: http://www.math.ncsu.edu/~kaltofen (Erich L. Kaltofen)

Preprint submitted to Elsevier April 20, 2020

© 2020 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0747717120300262
Manuscript_12820fdfa2b32417f07dce4647432967

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0747717120300262


If one computes ω such that β = (ω + 1/ω)/2, where either ω ∈ Zp or

ω = z ∈ Zp[z]/(z2 − 2βz + 1), z2 − 2βz + 1 irreducible in Zp[z], (2)

one obtains by the property of Tn(x),

Tn

( x + 1
x

2

)
=

xn + 1
xn

2
, (3)

that ζ = (ωδ + 1/ωδ)/2. Therefore ρ = ωδ, ρ̄ = 1/ωδ are the roots of x2 − 2ζx + 1 = 0 and one
can reduce Problem 1 to factoring

x2 − 2βx + 1 = (x − ω)(x − 1/ω) and x2 − 2ζx + 1 = (x − ωδ)(x − 1/ωδ), (4)

the latter possibly over the quadratic extension (2), and the discrete logarithm problemω±δ = ρ±1.
We proceed to choose p such that the discrete logarithm problem is solvable efficiently, say in

(log p)O(1) bit complexity. If p−1 is “smooth”, meaning p−1 has only prime factors of magnitude
(log p)O(1), the Pohlig-Hellman (1978) Algorithm can be used.2 Our objective here is to apply the
Pohlig-Hellman method directly to Problem 1 without factoring quadratic polynomials. When
doing so, we cannot determine the order η of ω as input, but our algorithm can compute the
order “on the fly” as an additional output. Note that in the case (2) we assume p + 1 to be
smooth (see Assumption 6.ii below). Our Pohlig-Hellman approach for Problem 1 required us to
unravel a double loop in the Pohlig-Hellman Algorithm and remove the Chinese remainder step.
We essentially determine δ in mixed-radix representation one digit at a time (see (5) below). In
Section 2, we present the original Pohlig-Hellman algorithm in the single loop form, which we
transfer to the Chebyshev degree problem in Section 3. Neither algorithms require the order of
ω on input.

Our work is motivated by sparse interpolation algorithms in Chebyshev basis (Lakshman and
Saunders, 1995; Kaltofen and Lee, 2003; Giesbrecht et al., 2004; Potts and Tasche, 2014; Arnold
and Kaltofen, 2015; Imamoglu et al., 2018). The first 4 papers compute for the non-zero terms
of degree δ values ζ = Tδ(β) and then deduce δ from ζ. Already Lakshman and Saunders (1995)
give an algorithm, for integral β which is based on size comparisons. The trick above to compute
an ω is in (Arnold and Kaltofen, 2015). In fact the sparse interpolation algorithms can choose ω
and evaluate at β = (ω + 1/ω)/2. If β is chosen, one can factor x2 − 2βx + 1 = (x − ω)(x − 1/ω).
Algorithm 3.2 below avoids such a factorization and works directly with Chebyshev polynomial
evaluations. Numerically, one may use Tn(cos(θ)) = cos(nθ) (Potts and Tasche, 2014). Our
algorithm allows for very large degrees when representing a polynomial modulo a prime p, that
is supersparse polynomials in Chebyshev basis in the language of (Kaltofen and Koiran, 2005).

2. Revisiting the Pohlig-Hellman Algorithm

Assumption 2. Let p be a prime number and ω ∈ Zp \ {0} such that the order η of ω divides
a known number P which divides p − 1. Here η is not known and P is smooth in the sense that
all prime factors are reasonably sized. Our algorithm is linear in the squareroot of the largest
prime factor of η.

2In (Pohlig and Hellman, 1978) it is stated that R. Silver, R. Schroeppel, and H. Block had similar unpublished
algorithms.

2



Consider the following problem:

Problem 3 (The Discrete Logarithm Problem). Assuming Assumption 2, compute δ ∈ Zη from
input p, ω ∈ Zp \ {0}, P and ζ = ωδ ∈ Zp.

The Pohlig-Hellman (1978) Algorithm and Pollard’s (1978) rho Algorithm solve Problem 3
(see (Menezes et al., 1996, Chapter 3) for a survey of discrete logarithm algorithms). The original
Pohlig-Hellman Algorithm uses the known or precomputed order η of ω ∈ Zp \ {0}. In this paper
we introduce an algorithm (Algorithm 2.2) which is a variant of the original Pohlig-Hellman
Algorithm and solves Problem 3 without precomputing the order η of ω ∈ Zp \{0}.Our algorithm
uses the order of the cyclic multiplicative group |Zp \ {0}| = p − 1 instead of the order η of
ω ∈ Zp \ {0}. For our algorithm to be efficient η needs to be smooth.

We start with introducing the following notation:

Definition 4. A sorted-prime-factorization of an integer N ∈ Z>0 is a prime-factorization

N = `e1
1 · · · `

em
m , ek ∈ Z>0 for k ∈ {1, . . . ,m} and m ∈ Z>0

of N ∈ Z>0 such that the prime numbers that appear in the factorization are sorted in the follow-
ing way:

`1 < `2 < · · · < `m.

Note that the large prime factors (if any) of N ∈ Z>0 appear at the end of the list [`1, `2, . . . , `m].

Definition 5. Let N ∈ Z>0 and

N = `e1
1 · · · `

em
m , ek ∈ Z>0 for k ∈ {1, . . . ,m} and m ∈ Z>0

be the sorted-prime-factorization of N. We define the list L(N) associated with N as follows:

L(N)
def
= [`1, . . . , `1︸     ︷︷     ︸

e1 times

, `2, . . . , `2︸     ︷︷     ︸
e2 times

, . . . , `m, . . . , `m︸      ︷︷      ︸
em times

].

We denote the i-th element of L(N) as L(N)[i]. Then we define

M (N, τ)
def
=

τ∏
i=1

L(N)[i] withM (N, 0)
def
= 1,

and

I(N, τ)
def
= k if L(N)[τ] = `k.

In other words,M (N, τ) is the product of the first τ elements of the list L(N) and I(N, τ) is the
index of the τ-th element of the list L(N).

2.1. Algorithm Description
Algorithm 2.2 below follows the idea of the Pohlig-Hellman (1978) Algorithm and solves

Problem 3, that without precomputing the order η of ω ∈ Zp \ {0} and without Chinese remain-
dering the exponent. Our algorithm works as follows:

Let
P = πε1

1 · · · π
εn
n ει ∈ Z>0 for ι ∈ {1, . . . , n} and n ∈ Z>0

3



be the sorted-prime-factorization of P, which divides p − 1 (Definition 4) and

η = `e1
1 · · · `

em
m , ek ∈ Z>0 for k ∈ {1, . . . ,m} and m ∈ Z>0

be the sorted-prime-factorization of η, which divides P. We have m ≤ n, {`1, . . . , `m} ⊆ {π1, . . . , πn};
and if `k = πι, then ek ≤ ει. Without precomputing the order η of ω, Algorithm 2.2 computes
the mixed-mixed-radix representation of δ ∈ Zη with respect to base M (η, 0), M (η, 1), . . . ,
M (η, e1 + · · · + em − 1) (the representation combines a mixed radix representation with a single
radix representation). Namely, it computes

δ =

e1+···+em−1∑
τ=0

dτM (η, τ), dτ ∈ Z`I(η,τ+1) . (5)

Algorithm 2.2 uses the sorted-prime-factorization P = πε1
1 · · · π

εn
n instead of the sorted-prime-

factorization η = `e1
1 · · · `

em
m of η during the computation. In the iterative step of Algorithm 2.2,

we compute the (τ + 1)’st digit dτ ∈ ZπI(η,τ+1) of (5).

2.2. Algorithm Pohlig-Hellman

Input: IA prime number p.
Iω ∈ Zp \ {0}.
Iζ = ωδ ∈ Zp.
IThe factorization of P ∈ Z>0 such that P divides p − 1

and such that the unknown multiplicative order η of ω divides P.
Output: IThe order η of ω.

Iδ mod η.

1. Let
P = πε1

1 · · · π
εn
n , ει ∈ Z>0 for ι ∈ {1, . . . , n} and n ∈ Z>0

be the sorted-prime-factorization of P (Definition 4). The deterministic bit complexity of our
algorithm is max{

√
πν | πν divides η, 1 ≤ ν ≤ n} (log p)O(1).

τ← 0; ∆−1 ← 0; Q← πε1
1 · · · π

εn
n (= P);

2. While τ ≤ ε1 + · · · + εn do Steps 2a–2c:
At this point the following will always be true.

η divides Q; (6)
M (η, τ) =M (Q, τ) (see Definition 5); (7)
∆τ−1 ≡ δ (mod M (Q, τ)); (8)

2a. If τ > 0 and ωM (Q,τ) = 1 then return η←M (Q, τ) and δ← ∆τ−1.

2b. Compute ζQ/M (Q,τ+1) and ωQ/M (Q,τ+1).
Here and in Step 2(c)iA we compute high powers, that by repeated squaring. One may
pre-compute a list of 2i’th powers which one can reuse in the repeated squaring algorithm.

2c. S ← {}.

2(c)i. For λ from 0 to πI(Q,τ+1) − 1 do Steps 2(c)iA and 2(c)iB:
4



2(c)(i)A. If ζQ/M (Q,τ+1) = (ωQ/M (Q,τ+1))∆τ−1+λM (Q,τ) then S ← S ∪ {λ}.
2(c)(i)B. If both 0, 1 are in S then Q ← Q/πI(Q,τ+1) (the εν change) and goto

Step 2.
2(c)ii. If S = {λ} then dτ ← λ; ∆τ ← ∆τ−1 + dτM (Q, τ); τ← τ + 1; goto Step 2.

else the input specs are not satisfied.

We now prove that (6–8) are loop invariants. For τ = 0 we have M (P, 0) = M (η, 0) = 1
(Definition 5) and Q = P, so the invariants are true. At each iteration, either τ was incremented
in the previous iteration, which has produced a new mixed-mixed radix digit of η (5), or Q was
divided by a prime. The first time the while loop is entered we can assume that a new digit
was found before (∆−1 = 0). The loop attempts to compute dτ from ∆τ−1 + dτM (η, τ) ≡ δ
(mod M (η, τ + 1)). Note thatM (η, τ) = M (Q, τ) by the loop invariant, butM (η, τ + 1) is not
known. One usesM (Q, τ + 1) instead. Since η divides Q (6) we have

ζ
Q

M (Q,τ+1) = ω
Q

M (Q,τ+1) δ = ω
Q

M (Q,τ+1) (∆τ+Γτ+1M (Q,τ+1))

= ω
Q

M (Q,τ+1) ∆τωQΓτ+1

= ω
Q

M (Q,τ+1) ∆τ1Γτ+1

= ω
Q

M (Q,τ+1) ∆τ = ω
Q

M (Q,τ+1) (∆τ−1+dτM (η,τ)), (9)

where Γτ+1 is the quotient obtained when δ is divided byM (Q, τ+1). All λ = dτ ∈ ZπI(Q,τ+1) solve
(9) when η divides (Q/M (Q, τ + 1)) · M (η, τ) = Q/πI(Q,τ+1). If η does not divide Q/πI(Q,τ+1),
then ωQ/πI(Q,τ+1) has order πI(Q,τ+1) (which is a prime) and only one λ = dτ ∈ ZπI(Q,τ+1) can satisfy
(9), namely the (τ + 1)’st digit of δ. Then we must also haveM (η, τ + 1) =M (Q, τ + 1), which
is (7) for the next iteration, which concludes the proof for the invariants (6–8).

We remark that Algorithm 2.2 does not require the full factorization of p − 1, only the factor
that is a multiple of the order η of ω. For the application in Prony-like algorithms with high
degrees we therefore can select the modulus p such that there is a smooth factor P of p−1 which
is sufficiently large to capture the term degree δ. The base ω can then be selected as ω = γ(p−1)/P

with γ ∈ Zp, which guarantees an order which divides P. In summary, p − 1 needs not be
fully factored, which makes the selection of p and factoring p − 1 via the elliptic curve factoring
algorithm much easier.

One may deploy Shank’s (1972) deterministic baby-steps/giant-steps algorithm or Pollard’s (1978)
randomized rho Algorithm (or Teske’s (1998) version) for Step 2(c)iA at λ = 2 when S is still
empty. Then by (9) dτ is the discrete log of Z = ζ

Q
M (Q,τ+1)ω−

Q
M (Q,τ+1) ∆τ−1 with base Ω = ωQ/πI(Q,τ+1)

of order πI(Q,τ+1), which has deterministic/expected bit complexity √πI(Q,τ+1)(log p)O(1). Index
calculus-based algorithms can also be used. Because Pollard’s rho randomized integer factoring
algorithm (or Strassen’s deterministic integer factoring algorithm) can compute the factoriza-
tion of P in O(

√
πn(log p)O(1)) bit-complexity, by Algorithm 2.1 we have the same asymptotic

randomized/deterministic bit complexity

max{
√
` | ` a prime divisor of p − 1}(log p)O(1)

for the discrete log problem modulo a prime p.

5



3. Pohlig-Hellman Algorithm for Computing Degree of a Chebyshev Polynomial of the
First Kind from Its Value

In addition to (3) we recall further properties of the Chebyshev Polynomials of the First Kind
Tn. An alternative to (1) is [

Tn(x)
Tn+1(x)

]
=

[
0 1
−1 2x

]n [
1
x

]
for n ∈ Z. (10)

Note that (10) extends the subscript range n to negative integers and by computing the power of
2 × 2 coefficient matrix gives an algorithm for evaluating all Tn in O(log(n)) scalar operations.
We have the following additional property

Tn(Tm(x)) = Tmn(x) = Tm(Tn(x)) for m, n ∈ Z,

which is easily derived from (3).

Assumption 6. Let p ≥ 3 be a prime number and β = (ω+ 1/ω)/2 ∈ Zp \ {0} such that the order
η of ω divides a known number P such that:

i. If β2 − 1 is a quadratic residue then P divides p − 1. In this case ω ∈ Zp.

ii. If β2 − 1 is a quadratic non-residue then P divides p + 1. In this case ω = z ∈ Fp2 =

Z[z]/(z2 − 2βz + 1), note that then z2 − 2βz + 1 is irreducible in Z[z], and the order of ω
divides p + 1 because 1 = NormFp2 /Zp (z) = (z · zp) mod (z2 − 2βz + 1).3 Our algorithm does
not compute in the extension.

Here η is not known and P is smooth.

The Lakshman-Saunders Algorithm chooses the β, and can do so by choosing ω ∈ Zp. But,
say, β is chosen randomly, then for β = 2, 3, . . . , p−2 one has exactly (p−3)/2 quadratic residues
of the form β2−1 if p ≡ 3 (mod 4), and exactly (p−5)/2 quadratic residues of the form β2−1 if
p ≡ 1 (mod 4). The proof of the count can be based by considering the range of (β + 1)/(β − 1).
There are exactly φ(p + 1)/2 of the β’s in Assumption 6.ii that lead to z’s of order p + 1, where φ
is Euler’s totient function. The latter follows because φ(p + 1) elements γ in Fp2 have order p + 1
and each pair γ, γp are the roots of one such (irreducible) polynomial.

Problem 7. Assuming Assumption 6, compute δ from p, β = (ω + 1/ω)/2 ∈ Zp \ {0}, P and
ζ = Tδ(β) ∈ Zp.

3.1. Algorithm Description
Algorithm 3.2 below follows the pattern of Algorithm 2.2 and solves Problem 7, that without

precomputing the order η of ω and without Chinese remaindering the degree of the Chebyshev
Polynomial of the First Kind. Our algorithm works as follows:

As in Section 2.1, let

P = πε1
1 · · · π

εn
n , ει ∈ Z>0 for ι ∈ {1, . . . , n} and n ∈ Z>0

η = `e1
1 · · · `

em
m , ek ∈ Z>0 for k ∈ {1, . . . ,m} and m ∈ Z>0

3We owe this observation to Mark van Hoeij.
6



be the sorted-prime-factorizations of P and η (Definition 4). Here η divides P and P divides
p − 1 (or p + 1 depending on the quadratic residuosity of β2 − 1). By Assumption 6, since
ωη = 1 and ωP = 1, we have Tη(β) = (ωη + 1/ωη)/2 = 1 and TP(β) = (ωP + 1/ωP)/2 = 1.
Note that the opposite is true: Tn(β) = 1 =⇒ ωn = 1 because then (ωn − 1)2 = 0. As was the
case with Algorithm 2.2, without pre-computing the order η of ω, Algorithm 3.2 computes the
mixed-mixed-radix representation of δ ∈ Zη (or −δ ∈ Zη because ζ = Tδ(β) = T−δ(β) by (3))
with respect to baseM (η, 0),M (η, 1), . . . ,M (η, e1 + · · · + em − 1):

δ =

e1+···+em−1∑
τ=0

dτM (η, τ), dτ ∈ Z`I(η,τ+1) . (11)

Like Algorithm 2.2 in Section 2, Algorithm 3.2 uses the sorted-prime-factorization P = πε1
1 · · · π

εn
n

instead of the sorted-prime-factorization η = `e1
1 · · · `

em
m . In the iterative step we compute the

(τ + 1)’st digit dτ ∈ ZπI(η,τ+1) of (11) (or (τ + 1)’st digit of −δ mod η).

3.2. Algorithm Computing the Degree of a Chebyshev Polynomial of the First Kind

Input: IA prime number p ≥ 3.
Iβ = (ω + 1/ω)/2 ∈ Zp \ {0}.
Iζ = Tδ(β) ∈ Zp.
IThe factorization of P ∈ Z>0 such that

if β2 − 1 is a quadratic residue then P divides p − 1,
if β2 − 1 is a quadratic non-residue then P divides p + 1
and such that the unknown multiplicative order η of ω divides P.

Output: IThe order η of ω.
Iδ mod η or −δ mod η.

1. Let
P = πε1

1 · · · π
εn
n , ει ∈ Z>0 for ι ∈ {1, . . . , n} and n ∈ Z>0

be the sorted-prime-factorization of P (Definition 4).

τ← 0; ∆−1 ← 0; Q← πε1
1 · · · π

εn
n (= P);

2. While τ ≤ ε1 + · · · + εn do Steps 2a–2c:
At this point the following will always be true.

η divides Q; (12)
M (η, τ) =M (Q, τ) (see Definition 5); (13)
∆τ−1 ≡ δ (mod M (Q, τ)) or ∆τ−1 ≡ −δ (mod M (Q, τ)); (14)

2a. If τ > 0 and TM (Q,τ)(β) = 1 then return η←M (Q, τ) and δ← ∆τ−1.

2b. Compute TQ/M (Q,τ+1)(ζ) and TQ/M (Q,τ+1)(β).
Here and in Step 2(c)iA we compute high degree values of the Chebyshev polynomials by
computing the matrix powers in (10) by repeated squaring. One may pre-compute a list of
2i’th powers of the matrices which one can reuse in the repeated squaring algorithm.

2c. S ← {}.

2(c)i. For λ from 0 to πI(Q,τ+1) − 1 do Steps 2(c)iA and 2(c)iB:
7



2(c)(i)A. If
TQ/M (Q,τ+1)(ζ) = T∆τ−1+λM (Q,τ)( TQ/M (Q,τ+1)(β) ) (15)

then S ← S ∪ {λ}.
2(c)(i)B. If 0, 1, 2 are in S then Q← Q/πI(Q,τ+1) (the εν change) and goto Step 2.

2(c)ii. If S = {λ} then dτ ← λ; ∆τ ← ∆τ−1 + dτM (Q, τ); τ← τ + 1; goto Step 2.
Else the input specs are not satisfied.

2(c)iii. If S = {λ1, λ2} then dτ ← min(λ1, λ2); ∆τ ← ∆τ−1 + dτM (Q, τ); τ ← τ + 1;
goto Step 2. Else the input specs are not satisfied. Note that this step chooses
one of the δ mod η and −δ mod η to proceed, and it appears only once during the
computation.

As by our discussion at the end of Section 2, we now prove that (12–14) are loop invariants.
For τ = 0 we have M (P, 0) = M (η, 0) = 1 (Definition 5) and Q = P, so the invariants are
true. At each iteration, either τ was incremented in the previous iteration, which has produced
a new mixed-mixed radix digit of η (11), or Q was divided by a prime. The first time the while
loop is entered we can assume that a new digit was found before (∆−1 = 0). The loop attempts
to compute dτ from ∆τ−1 + dτM (η, τ) ≡ δ (mod M (η, τ + 1)) (or attempts to compute dτ from
∆τ−1 +dτM (η, τ) ≡ −δ (mod M (η, τ+1))). Note thatM (η, τ) =M (Q, τ) by the loop invariant,
butM (η, τ + 1) is not known. One usesM (Q, τ + 1) instead. Since η divides Q (12) we have

T Q
M (Q,τ+1)

(ζ) = T Q
M (Q,τ+1)

(Tδ(β)) = T Q
M (Q,τ+1) δ

(β)

= T Q
M (Q,τ+1) (∆τ+Γτ+1M (Q,τ+1))(β)

=
1
2

(
ω

Q
M (Q,τ+1) (∆τ+Γτ+1M (Q,τ+1)) + ω−

Q
M (Q,τ+1) (∆τ+Γτ+1M (Q,τ+1))

)
=

1
2

(
ω

Q
M (Q,τ+1) ∆τωQΓτ+1 + ω−

Q
M (Q,τ+1) ∆τω−QΓτ+1

)
=

1
2

(
ω

Q
M (Q,τ+1) ∆τ1Γτ+1 + ω−

Q
M (Q,τ+1) ∆τ1−Γτ+1

)
=

1
2

(
ω

Q
M (Q,τ+1) ∆τ + ω−

Q
M (Q,τ+1) ∆τ

)
= T Q

M (Q,τ+1) ∆τ
(β) = T Q

M (Q,τ+1) (∆τ−1+dτM (Q,τ))(β), (16)

where Γτ+1 is the quotient obtained when δ is divided byM (Q, τ+1). All λ = dτ ∈ ZπI(Q,τ+1) solve
(16) when η divides (Q/M (Q, τ + 1)) · M (η, τ) = Q/πI(Q,τ+1). If η does not divide Q/πI(Q,τ+1),
then at most two λ = dτ ∈ ZπI(Q,τ+1) can satisfy (16), namely the (τ+1)’st digit of δ or the (τ+1)’st
digit of −δ mod η. If there are two λ that satisfy (16) then we choose the smallest one (one can
also chose the greater one). That choice appears only once while Algorithm 3.2 proceeds. After
that choice, there is only one λ = dτ ∈ ZπI(Q,τ+1) that satisfies (16) in each next iteration. Then we
must also haveM (η, τ + 1) =M (Q, τ + 1), which is (13) for the next iteration.

We do not know how to compute λ in Step 2(c)i by solving (15) via the matrix equations (10)
in a Shanks’s baby steps/giant steps manner, other than by computing Tδ+1(β) via retrieving ω
and ω±δ from the quadratic equations (4). The sign in the exponent is determined by the choice
of d0 in Step 2(c)iii. When doing so, one may continue with Algorithm 2.2 instead.

8



References

Arnold, A., Kaltofen, E., 2015. Error-correcting sparse interpolation in the Chebyshev basis. In: ISSAC’15 Proc. 2015
ACM Internat. Symp. Symbolic Algebraic Comput. Association for Computing Machinery, New York, N. Y., pp.
21–28, URL: http://www.math.ncsu.edu/~kaltofen/bibliography/15/ArKa15.pdf.

Giesbrecht, M., Labahn, G., Lee, W., 2004. Symbolic-numeric sparse polynomial interpolation in Chebyshev basis and
trigonometric interpolation. In: Proc. Workshop on Computer Algebra in Scientific Computation (CASC). pp. 195–
205, https://cs.uwaterloo.ca/~mwg/files/triginterp.pdf.

Imamoglu, E., Kaltofen, E. L., Yang, Z., 2018. Sparse polynomial interpolation with arbitrary orthogonal polynomial
bases. In: Proceedings of the 2018 ACM on International Symposium on Symbolic and Algebraic Computation.
ISSAC ’18. ACM, New York, NY, USA, pp. 223–230.
URL http://doi.acm.org/10.1145/3208976.3208999

Kaltofen, E., Koiran, P., 2005. On the complexity of factoring bivariate supersparse (lacunary) polynomials. In: Kauers,
M. (Ed.), ISSAC’05 Proc. 2005 Internat. Symp. Symbolic Algebraic Comput. ACM Press, New York, N. Y., pp. 208–
215, ACM SIGSAM’s ISSAC 2005 Distinguished Paper Award. URL: http://www.math.ncsu.edu/~kaltofen/
bibliography/05/KaKoi05.pdf.

Kaltofen, E., Lee, W., 2003. Early termination in sparse interpolation algorithms. J. Symbolic Comput. 36 (3–4), 365–
400, special issue Internat. Symp. Symbolic Algebraic Comput. (ISSAC 2002). Guest editors: M. Giusti & L. M.
Pardo. URL: http://www.math.ncsu.edu/~kaltofen/bibliography/03/KL03.pdf.

Lakshman, Y. N., Saunders, B. D., Apr. 1995. Sparse polynomial interpolation in nonstandard bases. SIAM J. Comput.
24 (2), 387–397.
URL http://dx.doi.org/10.1137/S0097539792237784

Menezes, A. J., Vanstone, S. A., Van Oorschot, P. C., 1996. Handbook of Applied Cryptography, 1st Edition. CRC Press,
Inc., Boca Raton, FL, USA.

Pohlig, S., Hellman, M., Sep. 1978. An improved algorithm for computing logarithms over GF(p) and its cryptographic
significance (corresp.). IEEE Trans. Inf. Theor. 24 (1), 106–110.
URL https://doi.org/10.1109/TIT.1978.1055817

Pollard, J. M., 1978. Monte carlo methods for index computation mod p. Mathematics of Computation 32 (143), 918–
924.

Potts, D., Tasche, M., 2014. Sparse polynomial interpolation in Chebyshev bases. Linear Algebra and Applications 441,
61–87.

Shanks, D., 1972. Five number-theoretical algorithms. In: Proc. 2nd Manitoba Conf. Numerical Math. pp. 51–70.
Teske, E., 1998. Speeding up Pollard’s rho method for computing discrete logarithms. In: International Algorithmic

Number Theory Symposium. Springer, pp. 541–554.

9




