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Abstract 

In this paper, the concept of exponentially 𝑝-convex stochastic process is introduced. Several 
new inequalities of Hermite-Hadamard type for exponentially 𝑝-convex stochastic process are 
established. Some special cases are given which are obtained from our main results. The results 
obtained in this work are the generalizations of the known results.  
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1. INTRODUCTION 

Stochastic process is a research area in probability 
theory dealing with probabilistic models that 
develop over time. It is seen as a branch of 
mathematics, because it starts with the axioms of 
probability and gives rise to remarkable results 
about those axioms. Even though those results are 
applicable to many areas, at first they are best 
understood with regard to their mathematical 
structures.  

Stochastic convexity is of great importance in 
statistics and probability, also in optimization, 
because it provides numerical approximations 
when there exist probabilistic quantities. 

In 1980, Nikodem [8] defined convex stochastic 
processes and investigated their properties. In 
1988, Shaked et al. [13] defined stochastic 

                                                 
 Corresponding Author: serapozcann@yahoo.com 
1 Department of Mathematics, Faculty of Arts and Sciences, Kirklareli University, 39100, Kirklareli, Turkey. 
ORCID: 0000-0001-6496-5088 

convexity and gave its applications. In 1992, 
Skowronski [14] introduced some new types of 
convex stochastic processes and obtained some 
further results on these processes. In 2012, Kotrys 
[3] extended classical Hermite-Hadamard 
inequality to convex stochastic processes.  

In recent years, there have been many studies on 
the above mentioned processes. For recent 
generalizations and improvements on convex 
stochastic processes, please refer to [2]-[6],       
[9]-[12], [15], [16]. 

2. PRELIMINARIES 

Suppose (Ω, 𝜉, 𝑃) be a probability space and 
𝑋: Ω → ℝ be a function. If the function 𝑋 is        
𝜉 − measurable it is called a random variable. 
Suppose 𝐼 ⊂ ℝ be an interval. A function      
𝑋: 𝐼 × Ω → ℝ is called a stochastic process, if the 
function 𝑋(𝑠,⋅) is a random variable for all 𝑠 ∈ 𝐼. 
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Let 𝑃 − lim and 𝐸[𝑋(𝑠,⋅)] denote the limit in 
probability and the expectation value of random 
variable 𝑋(𝑡,⋅), respectively. Then, a stochastic 
process 𝑋: 𝐼 × Ω → ℝ has 

(1)  continuty in probability in 𝐼, if for every 
𝑠 ∈ 𝐼  

𝑃 − lim
→

𝑋(𝑠,⋅) = 𝑋(𝑠 ,⋅). 

 (2)  mean-square continuty in 𝐼, if for all 𝑠 ∈ 𝐼  

lim
→

𝐸 𝑋(𝑠,⋅) − 𝑋(𝑠 ,⋅) = 0. 

(3)  mean-square differentiability at a point 𝑠 ∈ 𝐼 
if there exists a random variable 𝑋 (𝑠,⋅): 𝐼 × Ω → ℝ 
such that 

𝑋 (𝑠,⋅) = 𝑃 − lim
→

𝑋(𝑠,⋅) − 𝑋(𝑠 ,⋅)

𝑠 − 𝑠
. 

Note that if the stochastic process 𝑋: 𝐼 × Ω → ℝ 
has mean-square continuty, then it has continuty 
in probability, but the converse is not true. 

Let 𝑋: 𝐼 × Ω → ℝ be a stochastic process with 
𝐸 𝑋(𝑠,⋅) < ∞ and for all 𝑠 ∈ 𝐼. Let 𝑐 = 𝑠 <

𝑠 < 𝑠 <. . . < 𝑠 = 𝑑 be a partition of [𝑐, 𝑑], if the 
identity 

lim
→

𝐸 𝑋 Θ 𝑠 − 𝑠 − 𝑌 = 0 

holds for all normal sequences of partitions of 
[𝑐, 𝑑] and for all Θ ∈ 𝑠 , 𝑠 , 𝑘 = 1,2, . . . , 𝑛. 
Then, we can write 

𝑌(⋅) = 𝑋(𝑡,⋅)𝑑𝑡    (almost everywhere) 

The assumption of the mean-square continuity of 
the stochastic process 𝑋 is enough for the mean-
square integral to exist. 

Definition 2.1. [8] The stochastic process      
𝑋: 𝐼 × 𝛺 → ℝ is said to be convex if for all          
𝜃 ∈ [0,1] and 𝑐, 𝑑 ∈ 𝐼 the inequality 

𝑋(𝜃𝑐 + (1 − 𝜃)𝑑,⋅) ≤ 𝜃𝑋(𝑐,⋅) + (1 − 𝜃)𝑋(𝑑,⋅)    (1) 

is satisfied almost everywhere. If the inequality 

(1) is assumed only for 𝜆 = , then the stochastic 

process 𝑋 is called Jensen-convex or   - convex.  

Theorem 2.2. [3] Let 𝑋: 𝐼 × 𝛺 → ℝ be a Jensen-
convex stochastic process and mean-square 
continuous in 𝐼. Then for every 𝑐, 𝑑 ∈ 𝐼, 𝑐 < 𝑑, the 
inequality  

𝑋
𝑐 + 𝑑

2
,⋅ ≤

1

𝑑 − 𝑐
𝑋(𝑠,⋅)𝑑𝑠 ≤

𝑋(𝑐,⋅) + 𝑋(𝑑,⋅)

2
     (2) 

 is satisfied almost everywhere.  

Definition 2.3. [9] The stochastic process      
𝑋: 𝐼 × 𝛺 → ℝ is called a 𝑝-convex stochastic 
process if the inequality 

𝑋 [𝜃𝑐 + (1 − 𝜃)𝑑 ] ,⋅ ≤ 𝜃𝑋(𝑐,⋅) + (1 − 𝜃)𝑋(𝑑,⋅) 

holds almost everywhere for all 𝑐, 𝑑 ∈ 𝐼 ⊂ (0, ∞), 
𝜃 ∈ [0,1] and 𝑝 ∈ ℝ\{0}.  

Theorem 2.4. [9]  Let 𝑋: 𝐼 ⊂ (0, ∞) × 𝛺 → ℝ be 
a 𝑝-convex stochastic process and mean-square 
integrable on [𝑐, 𝑑] where 𝑐, 𝑑 ∈ 𝐼 and 𝑐 < 𝑑. Then 

𝑋
𝑐 + 𝑑

2
,⋅ ≤

𝑝

𝑑 − 𝑐

𝑋(𝑠,⋅)

𝑠
𝑑𝑠 ≤

𝑋(𝑐,⋅) + 𝑋(𝑑,⋅)

2
 

(3) 

Lemma 2.5. [9]  Let 𝑋: 𝐼 ⊂ (0, ∞) × 𝛺 → ℝ be a 
mean-square differentiable stochastic process on 
𝐼∘ (the interior of 𝐼) and 𝑐, 𝑑 ∈ 𝐼, 𝑐 < 𝑑 and           
𝑝 ∈ ℝ\{0}. If 𝑋  is mean-square integrable on 
[𝑐, 𝑑], then the following equality holds almost 
everywhere: 

𝑋(𝑐,⋅) + 𝑋(𝑑,⋅)

2
−

𝑝

𝑑 − 𝑐

𝑋(𝑠,⋅)

𝑠
𝑑𝑠 

=
𝑑 − 𝑐

2𝑝

1 − 2𝜃

[𝜃𝑐 + (1 − 𝜃)𝑑 ]

 

            × 𝑋 [𝜃𝑐 + (1 − 𝜃)𝑑 ] ,⋅ 𝑑𝜃.     

Definition 2.6. [7] A function 𝑓: 𝐼 ⊂ (0, ∞) → ℝ 
is called exponentially 𝑝-convex if the inequality 

Serap Özcan

Hermite-Hadamard Type Inequalities For Exponentially P-Convex Stochastic Processes

Sakarya University Journal of Science 23(5), 1012-1018, 2019 1013



𝑓 [𝜆𝑢 + (1 − 𝜆)𝑣 ] ≤ 𝜆
𝑓(𝑢)

𝑒
+ (1 − 𝜆)

𝑓(𝑣)

𝑒
 

holds for all 𝑢, 𝑣 ∈ 𝐼, 𝑝 ∈ ℝ\{0}, 𝜆 ∈ [0,1] and     
𝛼 ∈ ℝ.  

Now we recall the following special functions 
(see [1]). 

The beta function is defined as: 

𝛽(𝑥, 𝑦) = 𝜆 (1 − 𝜆) 𝑑𝜆,    𝑥 > 0, 𝑦 > 0. 

The hypergeometric function is as follows: 

 𝐹 (𝑎, 𝑏; 𝑐; 𝑧) 

=
1

𝛽(𝑏, 𝑐 − 𝑏)
𝜆 (1 − 𝜆) (−𝑧𝜆) 𝑑𝜆 

for 𝑐 > 𝑏 > 0, |𝑧| < 1. 

3. MAIN RESULTS 

In this section we introduce a new concept, which 
is called exponentially 𝑝-convex stochastic 
process. We establish new Hermite-Hadamard 
type inequalities for exponentially 𝑝-convex 
stochastic process. We also give some special 
cases obtained from our main results.  

Definition 3.1. The stochastic process              
𝑋: 𝐼 × 𝛺 → ℝ is called exponentially 𝑝-convex, if 
the following inequality holds almost 
everywhere: 

𝑋 [𝜃𝑐 + (1 − 𝜃)𝑑 ] ,⋅

≤ 𝜃
𝑋(𝑐,⋅)

𝑒
+ (1 − 𝜃)

𝑋(𝑑,⋅)

𝑒
            (4) 

for all 𝑐, 𝑑 ∈ 𝐼 ⊂ (0, ∞), 𝜃 ∈ [0,1], 𝑝 ∈ ℝ\{0} and 
𝛼 ∈ ℝ. If the inequality (4) is reversed, then the 
process 𝑋 is called exponentially 𝑝-concave.  

It can be easily seen that, an exponentially             
𝑝-convex stochastic process reduces to 𝑝-convex 
and convex stochastic processes for 𝛼 = 0 and 
(𝛼, 𝑝) = (0,1), respectively. 

Theorem 3.2. Let 𝑋: 𝐼 ⊂ (0, ∞) → ℝ be an 
exponentially 𝑝-convex stochastic process. Let 
𝑐, 𝑑 ∈ 𝐼 with 𝑐 < 𝑑. If 𝑋 is mean-square integrable 
on [𝑐, 𝑑], then for 𝑝 ∈ ℝ\{0} and  𝛼 ∈ ℝ, we have 
almost everywhere 

𝑋
𝑐 + 𝑑

2
,⋅ ≤

𝑝

𝑑 − 𝑐

𝑋(𝑠,⋅)

𝑠 𝑒
𝑑𝑠 

                                   ≤ 𝐴 (𝜃)
𝑋(𝑐,⋅)

𝑒
+ 𝐴 (𝜃)

𝑋(𝑑,⋅)

𝑒
   (5) 

where  

𝐴 (𝜃) =
𝜃𝑑𝜃

𝑒 ( ( ) )

 , 

𝐴 (𝜃) =
(1 − 𝜃)𝑑𝜃

𝑒 ( ( ) )

 . 

 Proof. From exponential 𝑝-convexity of the 
stochastic process 𝑋, we have 

2𝑋
𝑠 + 𝑡

2
,⋅ ≤

𝑋(𝑠,⋅)

𝑒
+

𝑋(𝑡,⋅)

𝑒
 . 

Let 𝑠 = 𝜃𝑐 + (1 − 𝜃)𝑑  and 𝑡 = (1 − 𝜃)𝑐 + 𝜃𝑑 . 
So, we get 

2𝑋
𝑐 + 𝑑

2
,⋅ ≤

𝑋 [𝜃𝑐 + (1 − 𝜃)𝑑 ] ,⋅

𝑒 ( ( ) )

 

                                         +

𝑋 [(1 − 𝜃)𝑐 + 𝜃𝑑 ] ,⋅

𝑒 ( )

. 

Integrating with respect to 𝜃 ∈ [0,1] and applying 
the change of variable method, we have 

𝑋
𝑐 + 𝑑

2
,⋅ ≤

𝑝

𝑑 − 𝑐

𝑋(𝑠,⋅)

𝑠 𝑒
𝑑𝑠.            (6) 

Thus, the left-hand side of the inequality (5) is 
established. For the right-hand side of the 
inequality (5), again utilizing the exponential       
𝑝-convexity of the stochastic process 𝑋, we have 
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𝑋 [𝜃𝑐 + (1 − 𝜃)𝑑 ] ,⋅

𝑒 ( ( ) )

≤
𝜃

𝑋(𝑐,⋅)
𝑒

+ (1 − 𝜃)
𝑋(𝑑,⋅)

𝑒

𝑒 ( ( ) )

. 

Integrating with respect to 𝜃 on [0,1], we have 

𝑝

𝑑 − 𝑐

𝑋(𝑠,⋅)

𝑠 𝑒
𝑑𝑠 ≤

𝑋(𝑐,⋅)

𝑒

𝜃𝑑𝜃

𝑒 ( ( ) )

 

                                       +
𝑋(𝑑,⋅)

𝑒

(1 − 𝜃)𝑑𝜃

𝑒 ( ( ) )

.   (7) 

A combination of inequalities (6) and (7) gives 
inequality (5). 

Remark 3.3. Choosing α = 0 in Theorem 3.2, we 
get inequality (3) in Theorem 2.4.  

Remark 3.4. By taking (𝛼, 𝑝) = (0,1) in 
Theorem 3.2, we attain inequality (2) in Theorem 
2.2.  

Theorem 3.5.  Let 𝑋: 𝐼 ⊂ (0, ∞) × 𝛺 → ℝ be a 
differentiable stochastic process on 𝐼∘ and 𝑋  be 
mean-square integrable on [𝑐, 𝑑]. If |𝑋 |  is 
exponentially 𝑝-convex stochastic process on 
[𝑐, 𝑑] for 𝑞 ≥ 1, 𝑐, 𝑑 ∈ 𝐼∘, 𝑐 < 𝑑 and 𝑝 ∈ ℝ\{0}, 
then the following inequality holds almost 
everywhere 

𝑋(𝑐,⋅) + 𝑋(𝑑,⋅)

2
−

𝑝

𝑑 − 𝑐

𝑋(𝑠,⋅)

𝑠
𝑑𝑠  

≤
𝑑 − 𝑐

2𝑝
𝐵 𝐵

𝑋 (𝑐,⋅)

𝑒
+ 𝐵

𝑋 (𝑑,⋅)

𝑒
 ,  

where 

𝐵 = 𝐵 (𝑐, 𝑑; 𝑝) =
1

4

𝑐 + 𝑑

2
 

×   𝐹 1 −
1

𝑝
, 2; 3;

𝑐 − 𝑑

𝑐 + 𝑑
 + 𝐹 1 −

1

𝑝
, 2; 3;

𝑑 − 𝑐

𝑐 + 𝑑
 , 

𝐵 = 𝐵 (𝑐, 𝑑; 𝑝) =
1

24

𝑐 + 𝑑

2
 

×   𝐹 1 −
1

𝑝
, 2; 4;

𝑐 − 𝑑

𝑐 + 𝑑
 + 6 𝐹 1 −

1

𝑝
, 2; 3;

𝑑 − 𝑐

𝑐 + 𝑑

+   𝐹 1 −
1

𝑝
, 2; 4;

𝑑 − 𝑐

𝑐 + 𝑑
 

and  

𝐵 = 𝐵 (𝑐, 𝑑; 𝑝) = 𝐵 − 𝐵 . 

Proof. From Lemma 2.5 and using power-mean 
integral inequality, we have 

𝑋(𝑐,⋅) + 𝑋(𝑑,⋅)

2
−

𝑝

𝑑 − 𝑐

𝑋(𝑠,⋅)

𝑠
𝑑𝑠  

= ∫
[ ( ) ]

 𝑋 [𝜃𝑐 + (1 − 𝜃)𝑑 ] ,⋅ 𝑑𝜃 

≤
𝑑 − 𝑐

2𝑝

1 − 2𝜃

[𝜃𝑐 + (1 − 𝜃)𝑑 ]

 

        × 𝑋 [𝜃𝑐 + (1 − 𝜃)𝑑 ] ,⋅  𝑑𝜃 

≤
𝑑 − 𝑐

2𝑝

|1 − 2𝜃|

[𝜃𝑐 + (1 − 𝜃)𝑑 ]

𝑑𝜃  

×
|1 − 2𝜃|

[𝜃𝑐 + (1 − 𝜃)𝑑 ]

 𝑋 [𝜃𝑐 + (1 − 𝜃)𝑑 ] ,⋅ 𝑑𝜃 . 

Since |𝑋 |  is exponentially 𝑝-convex stochastic 
process on [𝑐, 𝑑], we have almost everywhere 

𝑋(𝑐,⋅) + 𝑋(𝑑,⋅)

2
−

𝑝

𝑑 − 𝑐

𝑋(𝑠,⋅)

𝑠
𝑑𝑠  

≤
𝑑 − 𝑐

2𝑝

|1 − 2𝜃|

[𝜃𝑐 + (1 − 𝜃)𝑑 ]

𝑑𝜃  

    

×
|1 − 2𝜃| 𝜃

𝑋 (𝑐,⋅)
𝑒

+ (1 − 𝜃)
𝑋 (𝑑,⋅)

𝑒

[𝜃𝑐 + (1 − 𝜃)𝑑 ]

𝑑𝜃  

≤
𝑑 − 𝑐

2𝑝
𝐵 𝐵

𝑋(𝑐,⋅)

𝑒
+ 𝐵

𝑋(𝑑,⋅)

𝑒
. 

where  

|1 − 2𝜃|

[𝜃𝑢 + (1 − 𝜃)𝑣 ]

𝑑𝜃 = 𝐵 (𝑐, 𝑑; 𝑝), 
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|1 − 2𝜃|𝜃

[𝜃𝑐 + (1 − 𝜃)𝑑 ]

𝑑𝜃 = 𝐵 (𝑐, 𝑑; 𝑝), 

|1 − 2𝜃|(1 − 𝜃)

[𝜃𝑐 + (1 − 𝜃)𝑑 ]

𝑑𝜃 = 𝐵 (𝑐, 𝑑; 𝑝) − 𝐵 (𝑐, 𝑑; 𝑝). 

Thus, the proof is completed.  

Remark 3.6. If we choose 𝛼 = 0 in Theorem 3.5, 
we attain Theorem 4 in [9].  

Remark 3.7. By choosing (𝛼, 𝑝) = (0,1) in 
Theorem 3.5, we attain Theorem 5 in [9].  

Corollary 3.8.  Under the conditions of Theorem 
3.5, if we take 𝑞 = 1, then 

𝑋(𝑐,⋅) + 𝑋(𝑑,⋅)

2
−

𝑝

𝑑 − 𝑐

𝑋(𝑠,⋅)

𝑠
𝑑𝑠  

≤
𝑑 − 𝑐

2𝑝
𝐵

𝑋 (𝑐,⋅)

𝑒
+ 𝐵

𝑋 (𝑑,⋅)

𝑒
    (a. e. ), 

where 𝐵  and 𝐵  are given in Theorem 3.5.  

Remark 3.9. If 𝛼 = 0 in Corollary 3.8, we attain 
Corollary 4 in [9].  

Remark 3.10. By letting (𝛼, 𝑝) = (0,1) in 
Corollary 3.8, we attain Theorem 5 in [9].  

Theorem 3.11.  Let 𝑋: 𝐼 ⊂ (0, ∞) × 𝛺 → ℝ be a 
differentiable stochastic process on 𝐼∘and 𝑋  be 
mean-square integrable on [𝑐, 𝑑]. If |𝑋 |  is 
exponentially 𝑝-convex stochastic process on 
[𝑐, 𝑑] for 𝑞, 𝑟 > 1, + = 1, then the following 

inequality holds almost everywhere 

𝑋(𝑐,⋅) + 𝑋(𝑑,⋅)

2
−

𝑝

𝑑 − 𝑐

𝑋(𝑠,⋅)

𝑠
𝑑𝑠  

≤
𝑑 − 𝑐

2𝑝

1

𝑟 + 1
𝐵

𝑋 (𝑐,⋅)

𝑒
+ 𝐵

𝑋 (𝑑,⋅)

𝑒
, 

where 

𝐵 = 𝐵 (𝑐, 𝑑; 𝑝; 𝑞) 

     =

⎩
⎪
⎨

⎪
⎧ 1

2𝑐
  2𝐹1 𝑞 −

𝑞

𝑝
, 1; 3; 1 −

𝑑

𝑐
, 𝑝 < 0,

1

2𝑑
  2𝐹1 𝑞 −

𝑞

𝑝
, 2; 3; 1 −

𝑐

𝑑
, 𝑝 > 0,

 

𝐵 = 𝐵 (𝑐, 𝑑; 𝑝; 𝑞) 

    =

⎩
⎪
⎨

⎪
⎧ 1

2𝑐
  𝐹 𝑞 −

𝑞

𝑝
, 2; 3; 1 −

𝑑

𝑐
, 𝑝 < 0,

1

2𝑑
  𝐹 𝑞 −

𝑞

𝑝
, 1; 3; 1 −

𝑐

𝑑
, 𝑝 > 0.

 

Proof. Using Lemma 2.5, Hölder’s integral 
inequality and exponential 𝑝-convexity of the 
stochastic process |𝑋 |  on [𝑐, 𝑑], we have almost 
everywhere 

𝑋(𝑐,⋅) + 𝑋(𝑑,⋅)

2
−

𝑝

𝑑 − 𝑐

𝑋(𝑠,⋅)

𝑠
𝑑𝑠  

≤
𝑑 − 𝑐

2𝑝
|1 − 2𝜃| 𝑑𝜃  

     ×
1

[𝜃𝑐 + (1 − 𝜃)𝑑 ]

𝑋 [𝜃𝑐 + (1 − 𝜃)𝑑 ] ,⋅ 𝑑𝜃  

≤
𝑑 − 𝑐

2𝑝

1

𝑟 + 1

𝜃
𝑋 (𝑐,⋅)

𝑒
+ (1 − 𝜃)

𝑋 (𝑑,⋅)
𝑒

[𝜃𝑐 + (1 − 𝜃)𝑑 ]

𝑑𝜃  

≤
𝑑 − 𝑐

2𝑝

1

𝑟 + 1
𝐵

𝑋 (𝑐,⋅)

𝑒
+ 𝐵

𝑋 (𝑑,⋅)

𝑒
, 

where 

𝐵 =
𝜃

[𝜃𝑐 + (1 − 𝜃)𝑑 ]

𝑑𝜃 

     =

⎩
⎪
⎨

⎪
⎧ 1

2𝑐
  2𝐹1 𝑞 −

𝑞

𝑝
, 1; 3; 1 −

𝑑

𝑐
, 𝑝 < 0,

1

2𝑑
  2𝐹1 𝑞 −

𝑞

𝑝
, 2; 3; 1 −

𝑐

𝑑
, 𝑝 > 0,

 

𝐵 =
1 − 𝜃

[𝜃𝑐 + (1 − 𝜃)𝑑 ]

𝑑𝜃 

    =

⎩
⎪
⎨

⎪
⎧ 1

2𝑐
  𝐹 𝑞 −

𝑞

𝑝
, 2; 3; 1 −

𝑑

𝑐
, 𝑝 < 0,

1

2𝑑
  𝐹 𝑞 −

𝑞

𝑝
, 1; 3; 1 −

𝑐

𝑑
, 𝑝 > 0.

 

Remark 3.12. If we take 𝛼 = 0 in Theorem 3.11, 
we attain Theorem 6 in [9].  
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Theorem 3.13.  Let 𝑋: 𝐼 ⊂ (0, ∞) × 𝛺 → ℝ be a 
differentiable stochastic process on 𝐼∘ and 𝑋  be 
mean-square integrable on [𝑐, 𝑑]. If |𝑋 |  is 
exponentially 𝑝-convex stochastic process on 
[𝑐, 𝑑] for 𝑞, 𝑟 > 1, + = 1, then 

𝑋(𝑐,⋅) + 𝑋(𝑑,⋅)

2
−

𝑝

𝑑 − 𝑐

𝑋(𝑠,⋅)

𝑠
𝑑𝑠  

≤
𝑑 − 𝑐

2𝑝
𝐵

1

𝑞 + 1

𝑋 (𝑐,⋅)
𝑒

+
𝑋 (𝑑,⋅)

𝑒
2

, 

where 

𝐵 = 𝐵 (𝑐, 𝑑; 𝑝; 𝑟) 

     =

⎩
⎪
⎨

⎪
⎧ 1

2𝑐
  2𝐹1 𝑟 −

𝑟

𝑝
, 1; 2; 1 −

𝑑

𝑐
, 𝑝 < 0,

1

2𝑑
  2𝐹1 𝑟 −

𝑟

𝑝
, 1; 2; 1 −

𝑐

𝑑
, 𝑝 > 0,

 

Proof. From Lemma 2.5, using Hölder’s integral 
inequality and exponential 𝑝-convexity of the 
stochastic process |𝑋 |  on [𝑐, 𝑑], we have almost 
everywhere 

𝑋(𝑐,⋅) + 𝑋(𝑑,⋅)

2
−

𝑝

𝑑 − 𝑐

𝑋(𝑠,⋅)

𝑠
𝑑𝑠  

=
𝑑 − 𝑐

2𝑝

1 − 2𝜃

[𝜃𝑐 + (1 − 𝜃)𝑑 ]

𝑋 [𝜃𝑐 + (1 − 𝜃)𝑑 ] ,⋅ 𝑑𝜃 

≤
𝑑 − 𝑐

2𝑝

1

[𝜃𝑐 + (1 − 𝜃)𝑑 ]

𝑑𝜃  

× |1 − 2𝜃| 𝑋 [𝜃𝑐 + (1 − 𝜃)𝑑 ] ,⋅ 𝑑𝜃  

≤
𝑑 − 𝑐

2𝑝
𝐵

1

𝑞 + 1

𝑋 (𝑐,⋅)
𝑒

+
𝑋 (𝑑,⋅)

𝑒
2

, 

where 

 

𝐵 =
1

[𝜃𝑐 + (1 − 𝜃)𝑑 ]

𝑑𝜃 

     =

⎩
⎪
⎨

⎪
⎧ 1

2𝑐
  2𝐹1 𝑟 −

𝑟

𝑝
, 1; 2; 1 −

𝑑

𝑐
, 𝑝 < 0,

1

2𝑑
  2𝐹1 𝑟 −

𝑟

𝑝
, 1; 2; 1 −

𝑐

𝑑
, 𝑝 > 0,

 

and 

𝜃|1 − 2𝜃| 𝑑𝜃 = (1 − 𝜃)|1 − 2𝜃| 𝑑𝜃 

                =
( )

. 

Remark 3.14. If we take 𝛼 = 0 in Theorem 3.13, 
we attain Theorem 7 in [9].  
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