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Özet 

Kendinden uyarımlı eşiksel otoregresif (SETAR [Self-exciting threshold autoregressive]) model, 

doğrusal olmayan zaman serisi modellerinden biridir. Model, bir zaman serisinin kendi geçmiş 

değerlerinden etkilenerek farklı rejimlerde farklı doğrusal otoregresif süreçlere sahip olmasını 

ifade etmektedir. Tsay (1998), çalışmasında tek değişkenli kendinden uyarımlı eşiksel 

otoregresif süreci çok değişkenli yapı için genişletmiştir. 

Bu çalışmada, çok değişkenli kendinden uyarımlı eşiksel otoregresif model uygulaması için TL 

cinsinden günlük Dolar (USD) kuru ve altın fiyatları serisi kullanılmıştır. Altın fiyatları serisi 

gösterge değişken olarak alınıp çok değişkenli SETAR model oluşturulmuş ve modelin 

performansını değerlendirmek üzere modelden öngörüler elde edilmiştir 

Yapılan çalışmada, altın fiyatlarının gösterge değişken olarak alındığı çok değişkenli Dolar ve 

altın fiyatları modelinden elde edilen öngörüler serilerin gözlenen değerleri ile yakın bir seyir 

izlemektedir. Buna göre kurulan modelin öngörü yapmak için uygun olduğu söylenebilir. Elde 

edilen çok değişkenli SETAR modele göre, Türkiye piyasasında altın ve Dolar fiyatlarının 

birbirini etkilediği ve birlikte modellenebileceği sonucuna varılmıştır.  

 

Anahtar Kelimeler: Çok değişkenli SETAR model, Eşiksel lineer olmama testi, Türkiye’de 

altın ve Döviz fiyatları  

JEL Kodu:  C32 

 

AN APPLICATION OF THE DOLLAR AND GOLD PRICES IN TUR KEY WITH 

MULTIVARIABLE SETAR MODEL 

 

Abstract 

Self-exciting threshold autoregressive (SETAR) model is one of the non-linear time series 

models.  The model represents that a time series which is influenced by its own past values, has 

different regimes in different linear autoregressive processes.  Tsay (1998) extends the univariate 

self-exciting threshold autoregressive process for multivariate structure in his study. In this 
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study, daily exchange rate of dollar (USD) and gold prices series in TL are used for multivariate 

self-exciting threshold autoregressive model application.  Gold prices series has been taken as 

indicator variable and multivariate SETAR model has been created. Then, predictions have been 

obtained from the model to evaluate performance of the model. Accordingly, the model is said to 

be suitable to make predictions. According to this obtained multivariate SETAR model, the 

prices of gold and dollar affect each other in Turkey market and they can be modelled together.   

 

Keywords: Multivariate SETAR model, test of threshold nonlinearity, gold and currency prices 

in Turkey 

JEL Classification: C32 

 

1. Introduction 

Threshold autoregressive model (TAR) is one of the nonlinear time series model. Threshold 

autoregressive models are firstly discussed by Tong (1978) and Tong and Lim (1980). Then, 

Tong (1990) was explained the self-exciting threshold autoregressive model (SETAR) more 

broadly. Original source of the model is limited loops and circular structure of time series. Also, 

limited asymmetric loops can be modelled (Tong, 1990).  

Purpose of this study is to choose the structural parameters of SETAR model by using the Tsay’s 

(1989; 1998) method which provides an easy application of determining the model process. To 

determine the threshold value from structural parameters, a test statistic based on some 

prediction residuals and a threshold linearity test are applied. Also, graphical tools are used for 

possible threshold number and values. By using these statistics, SETAR model will be created.  

In this study, a multivariate SETAR model was obtained using daily gold prices in TL and data 

of Dollars (USD) exchange in free market and covering the period 03.01.2005-30.12.2011. 

Codes were created in MATLAB 7.7.0(R2008b) program for numerical calculations.  

 

2. Multivariate Threshold Autoregressive Model 

Tsay (1998) extended the univariate threshold autoregressive process for multivariate structure in 

his study. Let a time series with �-dimensions �� = (���, �	�, … , ���)′ is taken. �� is considered 

as a vector autoregressive process. A multivariate SETAR model with � regimes is defined as 

below.  �� = ��(�) + ∑ ��(�)���� + ��(�)����� ,														���� <	���� ≤ ��             (1) 
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Where ��(!) are (� × 1)-dimensional constant vectors and ��(!) are (� × �)-dimensional parameter 

matrices for $ = 1,… , �. ��(!) vectors at $. regime satisfy the ��(!) = ∑ %��/	!  equality. '!�/	’s are 

positively defined symmetric matrices and (%�), is a sequence of serially uncorrelated random 

vectors with mean * and covariance matrix +, the (� × �)-dimensional identity matrix. The 

threshold value ���� is assumed to be stationary and this variable depends on past observations 

of ����. For example; 

 ���� = ,′����                   (2) 

 

an arrangement can be made as above. ,, is a vector (� × 1)-dimensional. If , is chosen as , = (1,0, … ,0)′, threshold value becomes ���� = ��,���. If , = (./, ./, … , ./)′, the threshold value 

will be average of all of the elements in ���� (Chan, Wong, & Tong, 2004).  

 

2.1. Multivariate Nonlinearity Test 

The purpose of the multivariate SETAR model is to test the threshold nonlinearity of ��, under 

the assumption of known variables 0 and 1  for the given observations of (�� , ����	), 2 =1, … , 3. Null hypothesis establishes as the linear form of ��. If it is alternative hypothesis, �� is 

threshold which means it is nonlinear. For this, a regression application is created by using least 

squares method.  

 

 �′� = �4′�5+ 6′7 ,   2 = ℎ + 1,… , 3                (3) 

 

Here, ℎ	$�	max	(0, 1) and �4� = (1, �<���, … , �<���)′ are (0� + 1)-dimensional  regressors. 5, 

indicates the parameter matrices. If null hypothesis is true then the predictions of least squares 

will be useful in equality (3). However, if alternative hypothesis is true, predictions will be 

biased. In this case, the residuals which are acquired by sequentially revision of equation (3), 

will inform. ���� threshold variable is out of the values = = (�>?���, … , �@��) for equality (3). 

Let �(!) the smallest i th element of S. 2($) indicates the time index of �(!) and the linear 

regression which is the increasing sequence of threshold value ����, can be written as in the 

equation (4).  

 �′�(!)?� = �4′�(!)?�5+ 6′7(�)?A ,   $ = 1,… , 3 − ℎ               (4) 
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Dynamic structure of �� series does not change as seen in equation (4). Because for each 2 
correspond to ��, �4� regressors do not change. Only the order of the data entered into the 

regression changes.           Tsay 

(1998), develops a method which based on the prediction residuals of recursive least squares 

method to determine model alteration in equality (4). If the structure of series �� is linear, 

recursive least squares predictions of sequantial autoregression will be consistent and prediction 

residuals have white noise process. In this case, prediction residuals are expected to be 

uncorrelated with �4�(!)?� regressors. However if �� series has a threshold model, prediction 

residuals cannot have white noise because the predictions of least squares are biased. In this 

situation, the prediction residuals are related to �4�(!)?�  regressors. 

Let 5CD, be the least squares estimates of 5 for $ = 1, … , E in equation (4). It means that it is the 

sequential regression estimates which is obtained by the smallest data number with b 

observations of ����. Then,  

 �F�(D?�)?� = ��(D?�)?� −5C ′G�4�(D?�)?�                  (5) HF�(D?�)?� = �F�(D?�)?�/[1 + �4′�(D?�)?�JD�4�(D?�)?�]�/	                (6) 

 

Hereby, JD = [∑ �4�(!)?��4′�(!)?�D!�� ]�� and (5) and (6) shows prediction residuals of regression 

and standardized prediction residuals in equality (4). These values can be obtained from 

recursive least squares algorithm. After that,  

 

 	HL′�(M)?� = �4′�(M)?�N+O′7(P)?A ,  Q = E� + 1,… , 3 − ℎ                (7) 

 

regression is handled. E� indicates the beginning observation number of iterative regression. E� 
is recommended to be between 3√3 and 5√3 (Chan, Wong, & Tong, 2004). The regression 

problem is in equation (7) is to test the hypothesis U�: N = 0 against the alternative hypothesis U�:N ≠ 0. The test statistic prepared by Tsay (1998) for testing this hypothesis, is in the 

equation (8).  

  

 W(1) = [3 − ℎ − E� − (�0 + 1)] × (ln[det(]�)] − ln[det(]�)])             (8)   

 

Here, 1 indicates the delay of threshold variable ���� and  ]� = �@�>�D^∑ HF′�(M)?�HF�(M)?�@�>M�D^?�  

and 	]� = �@�>�D^∑ _L′�(M)?�_L �(M)?�@�>M�D^?�  are given. _L′` are the residuals obtained from least 



Dumlupınar Üniversitesi Sosyal Bilimler Dergisi EYİ 2013 Özel Sayısı 

 

137 
 

squares in equality (7). �� is linear under the null hypothesis. W(1) has a Chi-square distribution 

with degree of freedom �(0� + 1) (Tsay, 1998).  

 

2.2. Determining of Model Parameters 

 

To create the W(1) statistic in equation (8) 0 and 1 values must be known. Choice of 1 depends 

on 0 so firstly, determining 0 problem will be focused. To determine degree of autoregressive, 

values of partial autocorrelation were used in univariate time series. For multivariate systems, 

partial autocorrelation matrices (PAM) will be used and  0 value will be chose. Tiao and Box 

(1981) say that if data is suitable for l order vector autoregressive process, PAM structure in the l 

delay is final coefficient matrices. Partial autoregression matrice of a vector AR(0) process is 

zero for Q > 0. Elements and standard errors of partial autoregression matrices are obtained by 

applying the classical multivariate least squares method to autoregressive model for Q = 1,2, … 

(Tiao & Box, 1981).  

 c′�, … , c′� predictions are asymptotically normal distributed at a stationary AR(0)         model. 

The elements of partial autoregression matrices can be shown with + and – to summarize 

usefully. For example; when a coefficient in PAM is greater than 2 times own standard error or 

smaller than -2 times, it is included in matrix with sign + and -. Values in between is shown with 

a dot. 

Also, to determine the order of autoregressive model, likelihood ratio statistic can be used. . �M = * null hypothesis versus �M ≠ * alternative hypothesis is tested by equation (9). 

 ](Q) = ∑ (�� − �C����� −⋯−�C�����) × (�� − �C����� −⋯−�C�����)′@��M?�                         (9) 

  

When ](Q) is the matrix of residual sum of squares and cross products after fitting an AR(Q), 
likelihood ration statistic can be defined as in (10).  

 e = |](Q)|/|](Q − 1)|                 (10) 

 

If the statistic g(Q) = −(h − .i − Q�)ln	(e), is defined for e, the statistic is asymptotically 

distributed as j	 with �	 degrees of freedom (Bartlett, 1938). In this case, with the presence 

constant term	h = 3 − 0 − 1 is the effective number of observations (Tiao & Box, 1981). 

After determining 0 order, delay parameter given the greatest W(1) statistic and provides 1 ≤ 0 

condition, is stated. 
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2.3. Prediction 

 

If 0, 1, � and ℛl = (��, … , �l��)  are known, multivariate autoregression can divided into 

regimes in equation (4). For the m th regime of data a general linear model can written as in (11).  

 

 �� = n��(�) − ��                   (11) 

 

In this case 

 

 	�� = o�′pqrs.?�t?�, �′pqrs.?	t?�, … , �′pqrt?�	u ′              (12) 

 	�	(�) = (v�< , ��<(�), … , ��<(�))                 (13) 

 �� = o�′pqrs.?�t?�, �′pqrs.?	t?�, … , �′pqrt?�	u ′                         (14) 

 

	n� =
wx
y1 �′pqrs.?�t?��� ⋯ �′pqrs.?�t ⋯ �′pqrs.?�t?���1 �′pqrs.?	t?��� ⋯ �′pqrs.?	t ⋯ �′pqrs.?	t?���⋮ ⋮ ⋱ ⋮ ⋱ ⋮1 �′pqrt?��� ⋯ �′pqrt ⋯ �′pqrt?��� |}

~
          (15) 

 

are defined. Hereby, �� is the greatest value of m such that (���� < �(�) ≤ ��) is given for m = 1,… , � − 1. �� = 0 and �l = 3 − 0 are defined. The number of observation at m th regime is 3� = �� − ����. Least squares prediction of �(�)can obtain from classical multivariate least 

squares method. It means  

 �C (�) = pn<�n�t��(n<���)                           (16) 

 

and for m th regime of residuals variance-covariance matrices 

 'C� = �@r∑ (�Fpqrs.?�t?��F′pqrs.?�t?�)@r!��                (17) 

 

can be written (Chan, Wong, & Tong, 2004). AIC is defined as in (18) for the model in equality 

(1) (Tsay, 1998). 
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AIC(0, 1, �, ℛl)=∑ (3� ln�'C�� + 2�(s0 + 1))l���              (18) 

 

The most important problem is to determine the number of regime (�) as well as �� threshold 

variable in multivariate SETAR model. If 0 and 1 values are known, � and ℛl parameters can 

search through minimizing AIC. Tsay (1998) considers that regime number is chosen 2 or 3 for 

convenience in calculation. Also, he suggests that according to the different percentiles of ���� , 

data divided into subgroups. Applying the test statistic to these subgroups in equation (8) it can 

be seen whether a changing appears in the models at the subgroups. Finally, to correct the order 

of AR in each regime (0l ≤ 0), AIC can be used (Chan, Wong, & Tong, 2004). 

 

2.4. The Adequacy of the Model  

 

Tiao and Box (1981) propose using partial autoregression matrices and likelihood ratio statistic 

to examine the residuals in multivariate SETAR model. In this way whether the residuals contain 

any model can be determined.  

 

3. An application 

 

For the implementation of multivariate threshold autoregressive model, daily Dollar (USD) rate 

(���) and gold prices (�	�) in TL series were used. Time series consisted of 1311 daily 

observations between the date 03.05.2005-30.12.2011 (Kahraman, 2012). Exchange rate was 

obtained from http://evds.tcmb.gov.tr/ (2011). The graphs given the series versus time, is shown 

in Figure 1.  
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Figure 1. USD and gold TL prices 

 

Unit root research was made for series and the result of ADF test statistic are given in Table 1. 

According to this, both of the series include the unit root. Return series were calculated with �7 = (���, �	�)′ for both of them.  

 

Table 1. Results of Unit Root Tests 

USD Altın n�� � � 

Cut and trend 0.4589 0.5807 

Cut and without trend 0.6123 0.3155 

Without trend and cut 0.8378 0.9978 

 

In this case, ��� indicates the return values of USD series and �	�indicates the return values of 

gold series.  
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��� = 100 ∗ [ln(���) − ln	(��(���)) �	� = 100 ∗ [ln(�	�) − ln	(�	(���))] 
 

After series were converted, unit root structure was removed (Table 2). 

 

Table 2. The result of ADF unit root test for return series  

USD Altın n��	 �	 �	
Cut and trend  0.0001 0.0001 

Cut and without trend 0.0001 0.0001 

Without trend and cut 0.0001 0.0001 

 

The graphs of return series are given with Figure 2. In the study, �	� was used as threshold 

indicator variable for multivariate SETAR model so �	� = �� .  
 

 

 
Figure 2. Return series versus years 

 

Firstly, to determine the autoregressive degree of vector time series partial autoregression 

matrices (PAM) were created. Structure of PAM and likelihood ratio statistic is shown in Table 
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3. Also, to determine the model degree of vector autoregressive time series, AIC, SIC and 

likelihood ratio statistic were calculated for first 50 delay. Only the likelihood ratio statistic gave 

a result in determining the order of autoregression result and the other two criteria did not 

determine any order. Values of AIC, SIC and likelihood ratio statistic are in Table 4.  

 

Table  3. �7 vector autoregressive series regarding PAM structures and LR statistic 

 

Delay 1-6              p	. .	. −t p	. 	.			. 	.		t p	. 	.			. 	.		t p	. 	.			. 	.		t p	. 	.			. 	+	t p	. 	.			. 	.		t 
      6.696     4.472     1.544    1.627    11.360     5.109 

 

Delay 7-12            p	. 	.			. 	.		t p	. 	.			. −	t p	. 	.			. 	.		t p	. 	.			. 	.		t p	. 	.			. 	.		t p	. 	.			. 	.		t 
      8.902     4.235     5.198     6.019     2.269     3.134 

Table 4. AIC, SIC and likelihood ratio statistic values of vector time series 

Delay LR AIC SC Delay LR AIC SC 

1 6.2629 6.7017 6.7262 26 0.2737 6.7719 7.2042 

2 5.0529 6.7040 6.7448 27 3.7581 6.7751 7.2237 

3 1.2872 6.7093 6.7664 28 1.9951 6.7798 7.2447 

4 1.2729 6.7147 6.7881 29 2.2359 6.7843 7.2655 

5 11.5321 6.7118 6.8015 30 2.2306 6.7888 7.2863 

6 4.8488 6.7143 6.8203 31 1.0223 6.7943 7.3082 

7 8.1614 6.7141 6.8364 32 3.3366 6.7978 7.3280 

8 3.7799 6.7174 6.8560 33 4.2403 6.8006 7.3471 

9 5.4669 6.7193 6.8743 34 4.9215 6.8028 7.3657 

10 6.0320 6.7208 6.8921 35 1.3698 6.8080 7.3872 

11 1.8717 6.7256 6.9132 36 2.4508 6.8123 7.4078 

12 3.1364 6.7294 6.9334 37 1.7347 6.8172 7.4290 

13 8.7154 6.7287 6.9489 38 3.1987 6.8209 7.4489 

14 2.7331 6.7328 6.9694 39 1.6559 6.8258 7.4702 

15 7.8556 6.7328 6.9857 40 3.6198 6.8291 7.4898 

16 4.4116 6.7356 7.0047 41 1.1401 6.8345 7.5115 

17 3.3968 6.7391 7.0246 42 1.4600 6.8396 7.5329 

18 8.3994 6.7386 7.0404 43 2.5122 6.8438 7.5534 

19 5.0241 6.7408 7.0590 44 1.7939 6.8486 7.5746 

20 0.6547 6.7467 7.0811 45 1.0025 6.8541 7.5964 

21 0.7458 6.7524 7.1031 46 4.8455 6.8563 7.6149 

22 1.9903 6.7571 7.1242 47 1.5726 6.8613 7.6362 

23 8.1776 6.7567 7.1401 48 3.9629 6.8642 7.6554 

24 2.6994 6.7608 7.1605 49 3.7748 6.8673 7.6749 

25 1.7237 6.7658 7.1818 50 5.3581 6.8690 7.6929 
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The likelihood ratio statistic for comparison of the table value is j�	 = 9.49. As shown in Table 

3, 0 = 5 and W(1) was calculated. In this case, values of 1 can be 1 = 1,2, … ,5. To calculate W(1) statistic, different 1 values and different beginning observation number values � were 

used and the performance of statistic was compared. The values of W(1) statistic are shown in 

Table 5.  W(1) statistic was compared with the table value j			 = 33.92 and (0, 1)=(5,2) value which gave 

the greatest value of W(1) statistic with � = 100 beginning observations was used to research 

threshold value.  

To determine the regime number and threshold values, AIC criteria was used. Firstly, the model 

which had two regimes and single threshold value, was studied for � = 2.  

In this case, threshold value varied in the intervals	� ∈ [���(����), ���(����)]. AIC values were 

obtained as Figure 3.  

 

Table 5. Values of W(1) statistic � 0 1 W(1) 
100 

 

5 

 

1 54.4518 

2 96.9948 

3 60.3639 

4 76.6433 

5 77.9754 

125 5 

1 34.3138 

2 38.1897 

3 39.0557 

4 29.9877 

5 47.7874 

150 5 

1 7.1343 

2 4.0483 

3 9.7988 

4 6.7465 

5 9.5608 

175 5 

1 7.2559 

2 3.6887 

3 10.6245 

4 7.2878 

5 9.1101 
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Figure 5. The change of AIC value for the case of two regimes 

 

If the model with two regimes is discussed, AIC values decreased as the number of observation 

increased in Figure 6. After that, in the discussion of  the model with three regimes and two 

threshold values, it was found that AIC values were calculated. Threshold values varied in the 

intervals �� ∈ I���������, ���������K and �	 ∈ I���������, ���������K.  

 

 
Figure 6. According to two threshold values AIC variation 

 

When Figure 6 is examined, the threshold values can be decided according to the change of AIC. 

Seeing that the observations were clustered in the first regime for the data with two regimes, it 

was thought that it would be much better to divide them into three. According to this, �� �

B0.0722 and �	 � 0.1908 were chosen. Multivariate SETAR model was created like below.  
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�� =
���
��
����(�) +� �!(�)���!�

!�� + ��(�),																																	���	 ≤ −0.0722
��(	) +� �!(	)���!�

!�� + ��(	), 	−0.0722 < 	���	 ≤ 0.1908
��(�) +� �!(�)���!�

!�� + ��(�), 																						���	 > 0.1908
 

 

The optimal delay number of each regime was determined with respect to AIC criteria and the 

least squares predictions of parameters are given in Table 6. The numbers which are in brackets, 

show standard deviation of coefficients.  

 

 

Table 6. The least squares predictions for three regimes model �C� �C� �C	 �C� �C� �C� 
1. rejim 

�−0.075(0.061)0.196(0.092)� � 0.107 0.011(0.046)−0.055(0.070)
(0.029)−0.092(0.043)� � 0.023 0.030(0.047)−0.069(0.040)

(0.070)0.039(0.060)� �−0.089 −0.001(0.047)0.031(0.070)
(0.028)−0.032(0.043)� �−0.090 −0.018(0.045)−0.004(0.067)

(0.028)0.006(0.042)� �−0.028 −0.009(0.039)0.058(0.059)
(0.027)0.130(0.040)� 

2. rejim 

� 0.019(0.120)0.293(0.128)� �−0.030 −0.053(0.077)−0.013(0.082)
(0.095)−0.370(0.101)� �−0.019 0.940(0.107)−0.1000.114

(1.290)−0.017(1.375)� � 0.063 −0.070(0.070)0.070(0.075)
(0.094)−0.279(0.100)� � 0.307 0.051(0.101)−0.207(0.108)

(0.083)0.0690.089 � � 0.100 −0.128(0.097)0.097(0.103)
(0.098)0.035(0.105)� 

3. rejim 

� 0.049(0.056)0.076(0.100)� �−0.025 0.021(0.039)−0.034(0.070)
(0.022)−0.011(0.039)� � 0.059 −0.047(0.034)−0.032(0.061)

(0.031)−0.012(0.055)� � 0.010 0.008(0.040)−0.116(0.071)
(0.022)−0.001(0.004)� � 0.014 0.018(0.036)0.101(0.064)

(0.023)−0.053(0.040)� �−0.111 0.004(0.042)0.002(0.076)
(0.023)0.040(0.041)� 

  

As variance-covariance matrices of each regime are shown in Table 7, AIC value of model was 

obtained as 159.972. 

  

Table 7. Variance-covariance matrices of regimes and observation numbers 3 'C 

 

585 
o1.1420.003 2.595u 

 

131 
o 1.362−0.002 1.547u 

 

589 
o 0.813−0.010 2.590u 

 

To examine the residuals of model, PAM structure of residuals and results of likelihood ratio test 

are given in Table 8.  
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Table 8. PAM structures of residuals and LR statistic 

 

Delay 1-6       p	. .	. .t p	. 	.			. 	.		t p	. 	.			. 	.		t o	. +			. 	.		 u p	. 	.			. 	. t o− 	.			. 	.		u 
                      2.624    0.76      3.873      7.494     1.406      7.838 

 

Delay 7-12      p	. 	.			. 	.		t p	. 	.			. −	t p	. 	.			. 	.		t p 	. 	.		− 	.		t p	. 	.			. 	.		t p	. 	.			. 	.		t 
                         1.863     3.577     4.302     7.421      5.936     1.199 

 

It can be said that residuals do not show any model structures (j�	 = 9.49). 

Parametric bootstrap method was applied to predict from obtained multivariate SETAR model. 

New series were created by using residual terms of model and � = 1000. After that, two series 

were obtained by substituting into the model. Then, point predictions were made by using 

average of predictions. Results are in Figure 7.  

 

 

 
Figure 7. Prediction for gold and Dollar prices 
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Predictions, which were made according to model of multivariate Dollar and gold prices model 

in which gold prices were used as indicator value, were close to observation values of series, so 

it can be said that the created model is suitable to predict. According to obtained multivariate 

SETAR model, the results are that gold prices and Dollar prices affect each other in Turkey 

market and can be modelled together. In the condition, in which return of gold prices was close 

to zero (−0.0722 < 	���	 ≤ 0.1908 ), series was subject to multivariate AR(5) process. When 

return of gold prices was less than zero or much greater than zero, it was found that different 

multivariate AR(5) processes arose.  

 

4. Results 

Threshold autoregressive models which have partial linear structure stand out with a very wide 

range application. Threshold autoregressive model is useful especially in return series of data in 

the area of economic and financial due to the cyclic data structure. Due to structure of threshold, 

if series is not return series, it will be useful. In this study, the researchers attempted to establish 

multivariate SETAR model. Considering the study of Tsay (1998), the statistic which test the 

multivariate nonlinearity, was calculated and nonlinearity hypothesis could not be rejected for 

the data of daily gold and Dollar prices which are thought to be related to each other. The first 

order difference was required for stagnation in both series. Gold prices were taken as basis for 

multivariate SETAR model and according to the nonlinearity test results, it was found that 

concluded both of these series could be modelled by means of a common SETAR model. 

Another point in the application is that the beginning observation number is very effective for 

applying nonlinearity test. Accordingly, for these two series, especially depending on the first 

few months period, it can be said that nonlinearity structure is strong (� = 100). 

It was also found that if the value (���	) which is return of gold series two days ago, is close to 

zero, a regime arises for series, however if this value moves away from zero, different regimes 

can arise.  

The adequacy of model was determined by examining the PAM structure and likelihood ratio 

values of the residual terms of model. As seen in Figure 7, values obtained from forecasting 

period were close cruise to observation situation.  

Modeling process of SETAR model, determining structure of model, examining predictions and 

residuals correspond to Box-Jenkins approach. Due to the convenience and flexibility of SETAR 

model, it is useful for analyzing data of economic.  
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