Can a signal propagate superluminal (v>c) in dispersive medium?

M. Emre Taşgın

- Experiment: superluminal (v>c) propagation.
- Reshaping due to gain/absorption
- A theoretical method to test if velocity is reliable?
- Answer: is superluminal?
- Acknowledgements.

- Experiment: superluminal (v>c) propagation.
- Reshaping due to gain/absorption
- A theoretical method to test if velocity is reliable?
- Answer: is superluminal?
- Acknowledgements.

L

L

if travels with speed of light $\longrightarrow \Delta t_0 = L/c$

[1] L. J.Wang, A. Kuzmich, and A. Dogariu, Nature (London) 406, 277 (2000).

Problem!

Pulse displaces:

- □ Where to choose the <u>reference</u> point for displacement?
- □ Pulse also <u>reshapes</u> due to gain/absorption.

- Experiment: superluminal (v>c) propagation.
- Reshaping due to gain/absorption.
- A theoretical method to test if velocity is reliable?
- Answer: is superluminal?
- Acknowledgements.

example for reshaping

example for reshaping

example for reshaping

Problem: to distinguish

Velocity definitions

Displacement of the pulse peak

Velocity definitions

[2] J. Peatross, S. A. Glasgow, and M. Ware, Phys. Rev. Lett. 84, 2370 (2000).

Velocity definitions

[2] J. Peatross, S. A. Glasgow, and M. Ware, Phys. Rev. Lett. 84, 2370 (2000).

Is velocity true?

- Experiment: superluminal (v>c) propagation.
- Reshaping due to gain/absorption.
- A theoretical method to test if velocity is reliable?
- Answer: is superluminal?
- Acknowledgements.

Method to test velocities

Method to test velocities

Method to test velocities

$$\langle t \rangle_x = \frac{\int dt \, t \, S(x,t)}{\int dt S(x,t)}$$
 can be calculated using real- ω expansion $\langle x \rangle_t = \frac{\int dx \, x \, S(x,t)}{\int dt S(x,t)}$ can be calculated using real-k expansion

Fourier space to work within

$$\int dt \, t \, S(\Delta x, t) = \Delta x \int_{-\infty}^{+\infty} d\bar{\omega} \frac{dk}{d\omega} e^{-2k_I \Delta x} |D_1(\bar{\omega})|^2 \, n^*(\bar{\omega}) \\ -i \int_{-\infty}^{+\infty} d\bar{\omega} e^{-2k_I \Delta x} \frac{dD_1}{d\omega} D_1^*(\bar{\omega}) n^*(\bar{\omega}) \\ \langle t \rangle_x = \frac{\int dt \, t \, S(x, t)}{\int dt S(x, t)} \qquad \text{can be calculated} \\ \text{using real-}\omega \text{ expansion} \\ \langle x \rangle_t = \frac{\int dx \, x \, S(x, t)}{\int dt S(x, t)} \qquad \text{can be calculated} \\ \text{using real-}k \text{ expansion} \\ \int dx \, x \, S(x, \Delta t) = \Delta t \int_{-\infty}^{+\infty} d\bar{k} \frac{d\omega}{dk} e^{2\omega_I \Delta t} \left| D_2(\bar{k}) \right|^2 n^*(\bar{k}) \\ +i \int_{-\infty}^{+\infty} d\bar{k} e^{2\omega_I \Delta t} \frac{dD_2}{dk} D_2^*(\bar{k}) n^*(\bar{k}) \end{cases}$$

Method

in order to compare

$$\begin{split} \int dt \, t \, S(\Delta x,t) &= \Delta x \int_{-\infty}^{+\infty} d\bar{\omega} \frac{dk}{d\omega} e^{-2k_I \Delta x} \left| D_1(\bar{\omega}) \right|^2 n^*(\bar{\omega}) \\ &\quad -i \int_{-\infty}^{+\infty} d\bar{\omega} e^{-2k_I \Delta x} \frac{dD_1}{d\omega} D_1^*(\bar{\omega}) n^*(\bar{\omega}) \\ &\quad \langle t \rangle_x = \frac{\int dt \, t \, S(x,t)}{\int dt S(x,t)} \\ \end{split}$$
 can be calculated using real- ω expansion relate $D_1(\omega) \leftrightarrow D_2(k)$ $\quad \int dx \, x \, S(x,\Delta t) = \Delta t \int_{-\infty}^{+\infty} d\bar{k} \frac{d\omega}{dk} e^{2\omega_I \Delta t} \left| D_2(\bar{k}) \right|^2 n^*(\bar{k}) \\ &\quad +i \int_{-\infty}^{+\infty} d\bar{k} e^{2\omega_I \Delta t} \frac{dD_2}{dk} D_2^*(\bar{k}) n^*(\bar{k}) \end{split}$

$D_1(\omega) \leftrightarrow D_2(k)$

a) real- ω $n = 1$	$n = n_R + i n_I$	$A \rightarrow \text{incident}$
$\int_{-\infty}^{+\infty} d\bar{\omega} A_1(\bar{\omega}) e^{i(k(\bar{\omega})x - \bar{\omega}t)}$	$\int_{-\infty}^{+\infty} d\bar{\omega} D_1(\bar{\omega}) e^{i(k(\bar{\omega})x - \bar{\omega}t)}$	B→reflected
$+\int_{-\infty}^{+\infty} d\bar{\omega} B_1(\bar{\omega}) e^{i(\kappa(\omega)x+\omega t)}$	= 0	$RHS \longrightarrow D \rightarrow transmitted$
b) real-k $n = 1$	$n = n_R + in_I$	
$\int_{-\infty}^{+\infty} d\bar{k} A_2(\bar{k}) e^{i(\bar{k}x - \omega(\bar{k})t)} + \int_{-\infty}^{+\infty} d\bar{k} B_2(\bar{k}) e^{i(\bar{k}x + \omega(\bar{k})t)}$	$\int_{-\infty}^{+\infty} d\bar{k} D_2(\bar{k}) e^{i(\bar{k}x - \omega(\bar{k})t)}$	
x =	= 0	

$D_1(\omega) \leftrightarrow D_2(k)$

a) real- ω $n = 1$	$n = n_R + i n_I$	$A \rightarrow \text{incident}$
$\int_{-\infty}^{+\infty} d\bar{\omega} A_1(\bar{\omega}) e^{i(k(\bar{\omega})x - \bar{\omega}t)}$	$\int_{-\infty}^{+\infty} d\bar{\omega} D_{\mathbf{I}}(\bar{\omega}) e^{i(k(\bar{\omega})x - \bar{\omega}t)}$	$B \rightarrow reflected$
$+\int_{-\infty}^{+\infty} d\bar{\omega} B_1(\bar{\omega}) e^{i(k(\bar{\omega})x+\omega t)}$ $x =$	= 0	$\mathbb{R}HS \longrightarrow D \rightarrow \text{transmitted}$
b) real-k $n = 1$	$n = n_R + in_I$	$\overline{\omega} \rightarrow \omega$ is real
$\int_{-\infty}^{+\infty} d\bar{k} A_2(\bar{k}) e^{i(\bar{k}x - \omega(\bar{k})t)}$	$\int_{-\infty}^{+\infty} d\bar{k} D_2(\bar{k}) e^{i(\bar{k}x - \omega(\bar{k})t)}$	
$+ \int_{-\infty}^{+} dk B_2(k) e^{i(\kappa x + \omega(\kappa)t)}$		$\overline{k} \longrightarrow k$ is real
x =	= ()	

$D_1(\omega) \leftrightarrow D_2(k)$

a) real- ω $n = 1$	$n = n_R + i n_I$		$_{\nearrow} A \longrightarrow inc$	ident
$\int_{-\infty}^{+\infty} d\bar{\omega} A_1(\bar{\omega}) e^{i(k(\bar{\omega})x - \bar{\omega}t)}$	$\int_{-\infty}^{+\infty} d\bar{\omega} D_1(\bar{\omega}) e^{i(k(\bar{\omega})x - \bar{\omega}t)}$		∕⊸B—→refl	ected
$+\int_{-\infty}^{+\infty} d\bar{\omega} B_1(\bar{\omega}) e^{i(k(\bar{\omega})x+\bar{\omega}t)}$	= 0	RHS	→D-→trans	mitted
b) real-k $n = 1$ $\int_{-\infty}^{+\infty} d\bar{k} A_2(\bar{k}) e^{i(\bar{k}x - \omega(\bar{k})t)}$ $+ \int_{-\infty}^{+\infty} d\bar{k} B_2(\bar{k}) e^{i(\bar{k}x + \omega(\bar{k})t)}$	$n = n_R + in_I$ $\int_{-\infty}^{+\infty} d\bar{k} D_2(\bar{k}) e^{i(\bar{k}x - \omega(\bar{k})t)}$	\bar{a}	Ϙ Ϙ Ϙ Ϙ Ϸ kisr	real real
$x = \int_{-\infty}^{+\infty} d\bar{\omega} D_1(\bar{\omega}) e^{-i\bar{\omega}t} =$	$= 0$ $\int_{-\infty}^{+\infty} d\bar{k} D_2(\bar{k}) e^{-i\omega(\bar{k})t},$	>	RHSs equal at x=0	

$D_1(\omega) \leftrightarrow D_2(k)$ (if poles)

$D_1(\omega) \leftrightarrow D_2(k)$ (if poles)

Gaussian wave-packet $\longrightarrow U(0,t) = e^{-t^2/\tau^2} \cos(\omega_c t)$

- Experiment: superluminal (v>c) propagation.
- Reshaping due to gain/absorption.
- A theoretical method to test if velocity is reliable?
- Answer: is superluminal?
- Acknowledgements.

- Cannot distinguish between propagation and reshaping.
- Signal velocity and Pulse-peak velocity differ.
- Introduced a method to check if a velocity corresponds a physical flow?
- Detectors measure pulse-peak velocity.
- > Observed is not superluminal propagation; it's reshaping.

Special thanks to Victor Kozlov for illuminating discussions.
 I thank Gürsoy Akgüç for intensive help in the manuscript.

TUBİTAK-KARİYER No: 112T927 TÜBİTAK-1001 No: 110T876